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AFIT-ENC-MS-17-M-231 
Abstract 

 The main concern of a program manager is to manage the cost, schedule, and 

performance triad of a program.  Historically, programs tend to meet the performance 

aspect at the expense of cost or schedule, or both.  This research gives the acquisition 

community a set of tools that enables them to impartially analyze the cost and schedule of 

their programs, helping to mitigate these issues.  Five regression models encompass this 

toolset; one to estimate the median program cost and four to identify the probability of 

realizing a given overrun.  The cost model explains 81% of the variation in program 

acquisition using seven predictor variables available to the estimator at the time of MS B 

start.  Four logistic models estimate the probabilities that a program may identify as a 

program that experiences cost and schedule overruns of specific magnitudes from their MS 

B estimate.  These models predict the group the program may reside in with an accuracy of 

at least 0.79 probability and use multiple predictor variables available at MS B.  With these 

tools the program manager has the ability to preemptively identify potential problems in 

their program based on the program’s characteristics, potentially saving millions in cost and 

schedule overruns. 
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Using Multiple and Logistic Regression to Estimate the Median Will-Cost and Probability 

of Cost and Schedule Overrun for Program Managers 

 
I. Introduction 

 
   General Issue 

 

 The intersection of schedule and cost is of paramount importance, as it makes up two of 

the three parts of the Acquisition Program Baseline (APB)—the third being performance.  

Managing both cost and schedule to achieve the desired performance is what a program 

manager does by definition.  Establishing realistic baselines for schedule and cost are 

exceedingly difficult due to the nature of the Department of Defense (DoD) acquisition 

environment, as well as the levels of risk and uncertainty due to the nature of the program itself. 

 To combat the risk and uncertainty in cost and schedule, a program may err on the side of 

caution—lengthening schedules and increasing cost estimates to unreasonably high levels in 

order to capture all variability.  This strategy is dangerous to the program and the community as 

a whole in that it not only delays the fielding of an identified need to the warfighting 

community; it also needlessly ties up funding that could be used to fund other critical assets.   

 On the opposite end of the spectrum lie the programs that are overly optimistic in terms 

of cost and schedule.  This strategy is equally dangerous in terms of potential negative 

outcomes to both schedule and cost.  A schedule that is overly optimistic runs the risk of 

experiencing unscheduled delays due to potential re-work, if a problem is discovered that could 

have been prevented, and the schedule allowed for the proper oversight.  The expenses of 

conducting this re-work can increase at an exponential rate as the program moves through the 

acquisition process as demonstrated by Figure 1.  Being overly optimistic in terms of program 
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cost can lead decision makers to take critical funding from other programs or force a program 

manager to delay the program until additional funding can be secured.  

 
Figure 1: Cumulative LCC over Program Life 

 
Specific Issue 

 

There is a great deal of research that has been conducted concerning quantitatively 

optimizing and predicting cost in a DoD program environment.  Research conducted by Brown, 

White, Ritschel, and Siebel (2015) identified cost expenditure trends and growth patterns.  

Birchler, Christle, and Groo (2011) researched concurrency’s effect on cost growth using 

multiple regression.  There are many more examples of cost research and they are explored in 

detail in Chapter II of this thesis. 

One research project conducted at the Air Force Institute of Technology (AFIT) 

developed a quantitative method to predict a program schedule based on specific program 

attributes.  Prior to this method, and up to this point, the Air Force standard for estimating a 
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program schedule has been to rely on the opinion of a subject matter expert (SME), or to rely 

on the actual observed schedule of a similar completed program and adjust for differences 

(Jimenezet al., 2016).  

There has been no past research at AFIT that combines both cost and schedule into 

quantitative models within a set of programs to provide benchmarks for program evaluation.  

The goal of this research is to provide the Air Force acquisition community with a set of tools 

to analyze where they may realize cost or schedule savings.  At the very least, we strive toward 

an unbiased method of generating a Will Cost estimate to serve as a benchmark to compare to 

the actual program estimate and to identify what program characteristics may lead to significant 

or critical overruns to the current program baseline.  These, in turn, give program management 

a starting point to look at reducing cost and schedule further as per the Should Cost and Should 

Schedule directives. 

Scope and Limitations of Research 
 

The scope of this research is constrained to predicting a benchmark for program cost 

starting at program initiation, Milestone-B (MS-B), through to Initial Operational Capability 

(IOC) and for estimating the likelihood a program may stay within certain cost and schedule 

bounds.  The Defense Acquisition University (DAU), a government organization created to 

provide the DoD acquisition personnel with a professional career path and training, defines IOC 

thusly: “In general, attained when selected units and/or organizations in the force structure 

scheduled to receive a new system have received it and have the ability to employ and maintain 

it” (Defense Acquisition University, 2016).  The official definition for IOC continues by stating 

that each particular program defines its own IOC.  With each program studied having its own 

individual definition for IOC, there is a great deal of known variability in any model that 
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utilizes IOC as an evaluation point.  Removing this variability by researching and determining a 

universal definition for what IOC could be yields a more reliable model for predicting program 

schedule.  This research is limited further by only including programs that have cost data from 

the Technology Development phase (pre-MS-B), since this data is used as a predictor variable 

in the schedule model (Jimenez, 2016).   

 The definition we use as IOC is a limitation within the research due to the unavailability 

of several data points concerning IOC within the dataset, as well as the highly subjective nature 

of the definition of when IOC occurs in a program.  Due to these limitations, research 

alternatives to IOC as a termination point for our research.  Access to the information that 

makes it possible to create this new definition is also a limitation, as it is not readily available. 

 We utilize Selected Acquisition Report (SAR) to populate the data within the dataset 

being analyzed.  The SAR database contains the reported financial and schedule information for 

select programs (Brown, White, Ritschel, & Seibel, 2015).  The initial database from the SAR 

data is compiled and available for us to utilize, and additional data points have been found 

using SARs as well as other historical program documents.  Another limitation we note is that 

only programs that can be included in the regression model we use to predict schedule are 

available for inclusion in the analysis for the cost model.  We acknowledge that this approach 

may not be the optimal method; however, due to the constraints on the data and the prior 

research, we are confident moving forward by limiting the amount of programs to only those 

that fit within the schedule model parameters. 

Research Objectives 
 

 There are two main objectives of this research: to develop a statistical model to output the 

median estimate for program Will-Cost, and to develop logistic regression models to estimate 
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the probability a program will overrun certain threshold values pertaining to both cost and 

schedule.  The Will-Cost multiple-regression model is intended to give the acquisition 

community an unbiased median cost estimate for a program, which can, in turn, be used to 

develop the Should-Cost estimate, in millions of dollars for BY17, for said program.  The 

logistic regression models for the overrun analysis give the decision makers in the Air Force 

community a meaningful analysis for what program characteristics are more likely to 

experience cost and schedule overruns of the magnitudes identified in this study.   

Research Questions 
 

Our research is focused on addressing two questions.  Initially we address the question, 

“How can we use and build upon a previously created database to develop a mathematical 

model to predict the median cost of a program?”  The second question we address is: “How can 

we identify program characteristics for significantly and critically overrunning either cost, 

schedule, or both given the current APB, at MS B through IOC, and predict the probability that 

a program will experience such overruns?” 

 

Summary 
 

 Creating an objective and statistically-sound method to predict the median program cost 

provides the acquisition community with a tool to impartially estimate their Will-Cost, which 

allows them to take a unique perspective on potential program efficiencies to affect their 

Should-Cost goals.  By analyzing the program cost and schedule estimates from MS B and 

comparing them to the actuals based on the thresholds for significant and critical program 

overruns we are able to give the program management community tools to identify potential 
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problem programs and allocate resources accordingly.   

A review of literature is conducted in Chapter II to identify potential program 

stabilization points as a substitute for IOC, as well as reasons for cost and schedule variance 

and their associated predictors.  In Chapter III, the literature review is used to lay the foundation 

for our database and data utilization methods.  In Chapter IV, we build, test, and validate a 

multiple-regression model for estimating the program median Will-Cost.  In Chapter V we 

analyze the program indicators for not meeting their cost or schedule estimates and calculate the 

probabilities for programs, given certain characteristics, to fall into one of three groups.  In 

Chapter VI, we close with the conclusions of our research and any potential follow-on research. 
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II. Literature Review 

 
Chapter Overview 

 

 In this chapter, we conduct a review of the literature pertaining to relevant research into 

DoD cost and schedule analysis in order to build a foundation and gain the insight required to 

justify and conduct our research.  In order to gain this insight, we provide an overview of the 

research conducted in the past and highlight how we utilize what they found to move forward 

with our research.  In addition to identifying relevant research, we identify where we add 

additional insights by conducting our research; specifically, we identify where we may alleviate 

some of the research deficiencies. 

The ensuing sections provide the background for building our database, validating the 

previously built schedule benchmark model, building a cost benchmark model within the scope 

of our schedule model, and combining the results from each model to gain insight into how 

schedule and cost interact.  Before cost and schedule are addressed, we take time to explore the 

issue of using IOC as the conclusion point of our models. 

Defining IOC 
 

 The focus of this thesis is to develop a model to estimate the median cost of a DoD 

acquisition program and to identify the factors that may lead to a program overrunning certain 

cost and schedule thresholds.  However, IOC is an integral piece in achieving both of these 

goals.  Therefore, the literature review begins by researching what IOC is, the issues that we 

have with using it in this form, and how it may affect the research.  It is important to note that we 

have not found any peer-reviewed research defining IOC into a more rigid concept.   

 IOC is a program milestone that is set by the program’s user community and program 
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manager (PM) following the guidelines set by the acquisition community.  DAU defines IOC as 

being “attained when selected units and/or organizations in the force structure scheduled to 

receive a new system have received it and have the ability to employ and maintain it.” (“Defense 

Acquisition University (DAU) ‘IOC Definition,’” ) .  The definition purposefully leaves out any 

stringent empirical requirements for meeting IOC and standardized the programs only by 

requiring all IOC dates to meet the minimum operational capabilities of the user community; this 

simply means that whatever they are acquiring, it has to work.  This subjective treatment of IOC 

creates difficulty when objectively analyzing the data using a multiple-regression approach. 

 By having an end date to our research that varies from program to program in a non-

uniform manner, we have introduced a great deal of known variability.  When developing a 

multiple regression model, one main objective is to explain as much of the variability as 

possible—this makes the prediction more valid and accurate since the model can account for 

more of the variability that is present within the population being studied.  By accounting for this 

source of known variability within our models, we are much more precise in predicting where a 

program should be benchmarked for cost and schedule. 

 Past research has successfully used IOC as the end date, because it is generally outlined 

in the SAR and readily available as a data point for each program.  Research has even found that 

approximately 91% of cost growth, experienced on certain aircraft and avionics programs, is 

realized by the date each program defines as IOC (Kozlak, 2016).  This fact allows us to 

continue utilizing the given programmatic IOC dates in the model despite the risk to increased 

variability.  It is clear to us that a universal definition placing the finish line for each program in 

the same place, whether that be a specific percent of total units fielded or the first unit equipped, 

would be a better marker for reducing the variability when comparing multiple programs.  
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Moving forward, we explore how cost and schedule have been analyzed in the past. 

Schedule Research 
 

 A program’s schedule defines many aspects of the program: when the funding needs to 

be spent, how much it costs, and when it delivers a critical requirement to the warfighter, to 

name a few.  Schedule overruns have been, and continue to be, a major issue in defense 

acquisition programs.  To combat this issue, the Secretary of the Air Force, Deborah James, 

introduced a new initiative, called “Should Schedule”, in 2015.  Should Schedule created a 

benchmark for how long a program’s schedule should be, if identified process inefficiencies and 

risks were driven out of the program (James, 2015).  Essentially, should schedule develops a goal 

for which a program should strive towards. 

 In the wake of this new Should Schedule requirement, which was levied on all 

acquisition category I (ACAT I) programs, the largest and most highly visible programs in the 

Air Force (AF), research conducted at AFIT developed a multiple regression model which could 

be used to predict how long a program’s schedule should be, from MS-B to IOC, based on 

historical figures.  This model is successful at predicting a realistic program schedule—

explaining 42.9% of variability (Jimenez et al., 2016).  The research was based on the inclusion 

of 56 programs and relied upon three separate predictor variables that were deemed statistically 

significant.  The predictor variables were whether a program was a new start or a modification to 

an existing platform, the year MS-B occurred as it related to a specific change in defense 

acquisition policy, and the amount of funding prior to MS-B (Jimenez et al., 2016).  This tool has 

already been used, in an unofficial capacity, in the field by the KC-46 tanker program as a “cross 

check” for the latest schedule estimate.  The tool produced an estimate that was within four 

months of the latest revised program schedule (E-mail in Appendix C).   



10 
 

 In 2015, Brown, White, Ritschel, and Seibel conducted research to determine if there is a 

better, more empirical method to estimate a programs expenditure curve over time.  The widely 

accepted method utilized in the acquisition community is the 60/40 “rule of thumb”, which states 

that at a program’s halfway point, roughly 60% of the costs are accrued and 40% are remaining.  

Specifically tying their research to aircraft development programs, they tested the 60/40 heuristic 

and determined that it could not account for the differences between new start and modification 

programs.  Next, they researched program characteristics to construct an aircraft-centric 

methodology.  Lastly, they compared the accuracy of their models to the baseline 60/40 model—

finding that their Weibull model explained 74.6% of total variation, a 6.5% increase over the 

60/40 heuristic (Brown et al., 2015). 

 The most important aspect of Brown’s research is utilized in our own research, which 

was used in Jimenez’s research as well.  There is a statistically significant shift in program 

obligation expenditure rate between programs that began development prior to 1985 and those 

that began post-1985 (Brown et al., 2015).  This shift in expenditure rate is believed to be caused 

by President Reagan’s Blue Ribbon Commission on Defense Management (also referred to as 

the Packard Commission), which was aimed at studying issues within the DoD acquisition 

process (Packard, 1986).  From this report came several recommendations, which are credited 

with having led to many subsequent acquisition reform laws.  These laws, in turn, affected the 

nature of every acquisition program within the DoD since 1985.  Given this knowledge, we 

evaluate a binary variable which accounts for programs starting either before or after 1985, 

which Jimenez et al. (2016) found highly predictive of schedule.  Without this variable, we 

would not be evaluating programs on an equal basis since they are subject to different rules.  

 Monaco and White (2005) attempted to predict schedule risk using a regression approach.  
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They modified and used the database built by Sipple et al. (2004), and subsequently modified by 

future research as mentioned in the “A Benchmark for Cost” section of this chapter, to include 

67 programs in total.  The goal of their research was to predict the probability, and associated 

magnitude, of schedule growth within the programs studied (Monaco and White, 2005).  Of 

particular note within this research is the observation of data availability issues within the SAR 

database. 

 Monaco expanded the research database to include programs from 1990 to 2003 that have 

completed the Engineering and Manufacturing Development (EMD) phase of acquisitions using 

the final SAR report to populate their data.  They built a logistic regression model to predict the 

probability of schedule growth occurring and a multiple regression model to predict the 

magnitude of schedule growth, given growth has occurred.  When building their database to 

perform these analyses they note that several potentially highly predictive variables cannot be 

used due to their unavailability within the SARs.  Most notably, the variable missing from the 

majority of programs was the IOC date from either MS-B or EMD contract award (Monaco, 

2005).  Jimenez et al. (2016) note similar difficulties in obtaining an IOC date using the SAR 

database.  Despite the issues in obtaining data points for all of the identified potential predictors 

of schedule, Monaco was able to build two highly predictive models.   

Gailey III (2002) expanded upon the research conducted by Reig (1995) and increased 

the database studied from 24 to 46 programs and re-evaluated the results.  The study focused on 

28 program characteristics that were analyzed to determine if any of them could be a predictor of 

performance during the engineering and manufacturing development (EMD) phase.  In order to 

do this, they split the programs into two groups using EMD duration overrun as the criterion and 

defining the group with the larger overrun as “bad”, or unsuccessful (Gailey III, 2002).   
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Cost Research 
 

 The cost of a program is of paramount importance and feeds into every aspect of the 

program—from schedule to performance.  Decision makers want to know where to allocate 

precious resources and, to do this, they routinely rely on point estimates from the cost 

community that may not be bound by historical facts or are overstated for budgetary concerns.  

To combat this issue, the USD(AT&L) issued a memorandum in 2011, which mandated the use 

of Will-Cost and Should-Cost management for all programs meeting the requirements.  The 

Will-Cost estimate is what the current program estimate is, which is to be compared to the 

Should-Cost estimate.  The Should-Cost estimate is meant to be what a program should cost if all 

process inefficiencies are driven out; essentially, this becomes a benchmark for the program to 

strive towards (MFR in Appendix A).  There have been several empirical models aimed at 

predicting program cost, none of which are widely used across the DoD.  We use the completed 

research to vector our own research in order to develop a complete and accurate model. 

 The most recent cost research conducted at AFIT, completed in 2016, focused on cost 

growth amongst the programs studied.  More specifically, the research is focused on identifying 

factors that contribute to cost growth and what the historical cost growth is at the four major 

program reviews.  Most importantly to our research, they identified that bombers, prototyping, 

and electronic aircraft systems upgrades were the most common predictors of cost growth at 

these program reviews and that at IOC, the median percent of total cost growth experienced is 

91% (Kozlak, 2016).  We use this information to identify and evaluate these three predictor 

variables for inclusion into our cost-estimating model.  The findings that IOC was a point in the 

program lifecycle, where the majority of cost growth was realized, means that our assumptions to 

continue using IOC as a program termination date is valid.  This is critical since our schedule 
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model does not include any programs for which we cannot ascertain the IOC date and cost 

information. 

 The study conducted by Deitz, Eveleigh, Holzer, & Sarkani (2013) examined the 

importance of developing a robust Analysis of Alternatives (AoA) prior to MS-B and the effects 

that an analysis of this nature may have on program success.  According to their research, the 

DoD has a history of rushing programs into development that are simply not ready due to various 

reasons.  In the case of the Joint Strike Fighter, the Government Accountability Office (GAO) 

attributed a major factor for the cost overrun to the program prematurely entering into EMD.  

The researchers stated that, while only 10% of a program’s life-cycle cost was invested prior to 

MS-B, it may be the most important 10% because 70% of a program’s life-cycle costs are 

committed and set at this phase (Deitz et al. 2013).  These findings indicate that the most 

important time for cost savings in a program is prior to MS-B and are important for our research 

because they validate using pre-MS-B data in our estimating models.   

Birchler, Christle, & Groo (2011) studied the idea of concurrency, or developing a 

weapons system while in production, and cost growth.  The researchers acknowledged that 

concurrency could inherently increase program risk, which could foreseeably lead to cost 

growth, as is the consensus in the acquisition community.  They made the point that every 

program had some level of concurrency, and concurrency is necessary in any environment other 

than a zero-risk environment.  Their research is focused on exploring the relationship between 

concurrency and cost growth (Birchler et al., 2011). 

 In their study, they defined concurrency as “the proportion of research, development, test 

and evaluation (RDT&E) appropriations that are authorized during the same years that 

procurement appropriations are authorized” (Birchler et al., 2011:5).  They further defined 
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concurrency in their research as the point where less than 95% of the total amount of RDT&E 

funding is still being spent, while procurement is taking place.  This metric was used because 

they reason that RDT&E funding is spent throughout most of a program’s life for various 

reasons that do not necessarily deal with concurrency and, therefore, anything less than 5% of 

the total amount of RDT&E funding being spent at this time did not constitute concurrency.  The 

researchers used multiple regression techniques to determine if concurrency predicted cost 

growth and found no evidence to support the relationship (Birchler et al., 2011).  

Although Birchler et al. (2011) found no evidence that concurrency was correlated with 

cost growth, their database was much smaller than our database—consisting of only 28 

programs.  This leads us to believe they may not have had enough power to detect correlation.  

Additionally, we can evaluate concurrency as a possible predictor for schedule, even though 

Jimenez’s research did not find that it was highly predictive of schedule, as we also expand this 

database and analyze more programs than Jimenez. 

Foreman (2007) researched methods to further cost and schedule growth estimation by 

including longitudinal variables that account for changes that take place over time.  The research 

conducted by Foreman et al. uses previous research conducted at AFIT in the early 2000’s by 

Sipple et al. (2004), Genest & White (2005), Lucas (2004), and others by utilizing the database 

built and added to by these researchers and analyzing additional predictor variables.  Most 

importantly, the researchers found that the length between MS-III (synonymous with MS-C) and 

IOC, as well as a binary variable for MS-III slip (indicating whether or not the MS-III date 

occurred later than originally planned), to be predictive and positively correlated to cost growth 

in a program (Foreman, 2007).  These indicate to us that schedule overruns, particularly later in a 

program, may correlate to higher costs. 
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Sipple et al. (2004) conducted a study to explore defense acquisition program cost growth 

using SAR data from 1990 to 2000 for programs from all defense departments.  The focus of this 

research is on cost growth as it applies to the Engineering Manufacturing Development (EMD) 

phase, or between MS-B and MS-C, of an acquisition program.  This research is further limited 

by focusing solely on engineering cost growth within this phase.  Applying a multiple regression 

analysis to the programs that experience cost growth within their dataset, Sipple et al. developed 

a model that predicts the expected amount of cost growth with an adjusted 𝑅𝑅2 value of .4645.  It 

is important to note that the data for the response variable, engineering % (overrun), does not 

follow a normal distribution and the researchers transformed it using a log-normal transformation 

to achieve desirable results.  This allowed the researchers to use the variable in the model while 

passing the assumption of normality, a key assumption in the development of regression models 

as we discuss in Chapter III.  The researchers found that variables pertaining to schedule had the 

most predictive ability of the 78 independent predictor variables analyzed in the study (Sipple et 

al., 2002). 

From this study, we are able to take two main findings to further our own research.  Most 

importantly, we learn what variables performed well to predict program cost and can explore 

using them in our own research.  The most predictive variables were found to be as follows: 

maturity from MS-II (synonymous with MS-B), not using a major military contractor (i.e. not 

using Lockheed-Martin, Northrup Grumman, Boeing, Raytheon, Litton, or General Dynamics), 

and program acquisition unit cost (Sipple et al., 2002).  This being said, there are a total of 78 

predictive variables explained by this research which we can use to explore cost growth in our 

research. 

Secondly, we find further evidence that schedule seems to be a major driver of cost in 
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DoD acquisition programs.  This leads us to believe that the same variables used to predict 

schedule may be used to predict cost since they appear to be so intimately entwined.  

Additionally, this drives our belief moving forward into our analysis that there is a positive 

correlation between cost and schedule. 

Relationship Between Cost and Schedule 
 

 The ability to combine two of the three sides of the acquisition program triangle, cost and 

schedule, into a comprehensive and usable tool for the acquisition community at large allows 

program managers to identify the programs that may have a higher risk of overrunning cost and 

schedule estimates.  It is generally accepted knowledge that there exists a trade-space within the 

triangle that every program is confined to, yet no studies exist, to our knowledge, which attempt 

to quantify or analyze how any two of the different facets of the triangle interact outside of one 

NASA study.  We fill this gap with our research using the cost and schedule analyses to 

determine how they interact.  The following are the only prior research efforts to analyze cost 

and schedule in the same study. 

 In August 2014, at the annual NASA Cost Symposium, Burgess Consulting, Inc. gave a 

presentation titled Integrated Estimating Relationships in which they tie together three main 

aspects of NASA programs in order to predict the probability of a program accomplishing its 

cost or schedule goal.  The research studies the interaction between the integrated relationships 

between cost estimating, schedule estimating, and mission phasing.  Mission phasing is the 

outlay profile of the program, which corresponds to when funding is actually spent.  A total of 37 

NASA programs were used in the study and multiple regression models were developed to 

analyze the relationships between the three variables (Burgess & Krause, 2014) 

 Three estimating relationships were quantified by this study: Phasing estimating 
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relationship (PER), Cost estimating relationship (CER), and Schedule estimating relationship 

(SER).  The PER is the outlay profile of the program, quantifying how front-loaded or back-

loaded the funding is.  The CER is the total program cost from the system requirements review 

(SRR), a date that occurs prior to MS-B, through launch; while the SER is the time, in months, 

from SRR to launch.  Each of these variables is computed using a multiple-regression equation to 

estimate the output based on four independent inputs.  Unfortunately, since each input is specific 

to space acquisitions, and not found in all programs outside of space acquisition, we cannot 

analyze any of the variables in our own research.  From this analysis, a set of tools was 

developed to give decision makers the ability to quantify trade-offs between cost, schedule, and 

phasing in their program.  Additionally, this analysis allows the program manager to conduct a 

programmatic “health assessment” in which the estimating relationships are analyzed to 

determine if they fall within a standard deviation of the mean observed historical value (Burgess 

& Krause, 2014).  Our research follows closely in line with their trade-off analysis. 

 The trade-off analysis conducted in this research relies on conditional analysis and 

normal probability curves.  This research has developed a tool to predict the probability of a 

program meeting one of the estimating relationships given the other two.  An example given in 

the presentation is “Given my project’s budget profile & cost estimate, what is the probability it 

will be ready for launch by the need date?” (Burgess & Krause, 2014:14).  From this research we 

can take a great deal of information to be used in our own.  Conditional analysis is something 

that can be applied to our own research in order to add an additional layer of analysis for use by 

the decision maker.  While this research is very similar to ours, there are many important 

differences.  There are relatively few parallels that we can draw between space programs and the 

programs in our database, mainly regarding program constraints and unit quantity, meaning that 
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our analysis is vastly different from theirs.  Additionally, we only use cost and schedule, we do 

not use program phasing in this research.   

 The Institute for Defense Analysis (IDA) has conducted research for the DoD in various 

capacities.  We identify two specific studies pertaining to cost and schedule trends from their 

pool of research.  The primary study, conducted in 1989, specifically analyzed the effectiveness 

of acquisition initiatives that were present at the time.  This research consisted of 82 programs, 

gathered from SARs, which met the main criteria of the research team of not being recent starts.  

The researchers used a regression analysis to determine which variables had the largest 

significant impact on cost growth.  They found that development schedule growth, development 

schedule length, and production stretch (defined as procuring the same quantity over a longer 

period than planned) were the major drivers of total program cost growth (Tyson, Nelson, Om, & 

Palmer, 1989).  This research stands as a prime example of program schedule driving costs. 

 The second study, conducted in 1994, expands upon the initial study from 1989 to 

identify cost and schedule growth patterns.  According to their research, longer schedules mean 

higher costs, and cost growth made systems less affordable while simultaneously eroding 

congressional support.  This study consisted of tactical missiles, tactical aircraft, and included 82 

programs analyzed between Milestone II (currently referred to MS-B) and IOC (Tyson, Harmon, 

& Utech, 1994).  Our main takeaway from this research is the relationship between schedule 

growth and cost growth.  Tyson et al. (1994) developed two multiple regression models; one for 

tactical missiles and one for tactical aircraft, which use schedule and aspects of unit cost to 

predict total acquisition cost.  While this research analyzes cost and schedule together, the 

schedule is not analyzed as a separate model, but, rather, is a variable to predict total cost 

growth.  This suggests to us that there is a positive correlation between schedule growth and cost 
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growth. 

Summary 
 

 This review of relevant literature notes that there have been numerous studies performed 

before ours that help direct our efforts.  What we have uncovered has shed light on the many 

methodologies that have been employed, as well as their findings under each aspect of our 

research.  With the knowledge of prior research, we are able to confidently identify our starting 

point and strategy moving forward to our methodology.   

 One finding is clear after conducting this review; there is very little research linking 

together two of the most important aspects of a program into one analysis: the program’s cost 

and schedule.  By reviewing the literature, we now know that there is this need in the community 

and we can fill it.  We gained the insight into how to structure our methodology, which is 

covered in detail in the ensuing chapter. 
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III. Methodology 

Chapter Overview 
 

 In this chapter, we discuss the procedures used to conduct our research in seven separate 

sections.  We begin with a discussion of our database—to include data sources, compilation, and 

assumptions.  From there we move into defining our response variable for program cost.  Next, 

we discuss the pursuit of predictor variables for cost and set the stage for how they are analyzed 

and selected.  Then we discuss the multiple regression technique we use and experiment-wise 

error rate we accept.  Afterwards, we outline the tests and procedures we must conduct to ensure 

our predictive model is stable and applicable to the data analyzed.  From there we discuss the 

validation of our model and the reinsertion of the validation pool to create the final models.  

Lastly, we outline how we analyze the programs logistically to predict cost and schedule 

threshold overruns.  

Database 
 

 To conduct our analysis, we first utilize the database built by Jimenez et al. (2016) in our 

study, as we build upon the research he conducted here at AFIT.  We build upon the database 

employed in 2016 by using SAR data and filling in missing critical data points through data 

inquiries on the internet, specifically through the Air Force Magazine and Deagel.com, and using 

correspondence through the program offices at Wright-Patterson Air Force Base (WPAFB).  In 

this section we identify what we use to identify and collect program data before outlining 

inclusion and exclusion requirements for our database.  We continue by detailing how our 

complete database is populated; building off prior research as well as the additional research we 

conduct ourselves.  We then touch on the use of a validation pool for our research before 
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discussing several key assumptions we make regarding data collection and inclusion. 

     Selected Acquisition Report (SAR) Data 

 This research uses SAR data almost exclusively to populate the database we analyze and 

make inferences from.  According to the DAU, the SAR is a comprehensive summary status 

report of a Major Defense Acquisition Program (MDAP) and is required for periodic 

submission to Congress; it includes key cost, schedule, and technical information in a standard 

format.  Entry into the Defense Acquisition Management Information Retrieval (DAMIR) 

system is controlled, as it includes both classified and unclassified programs; therefore, for 

national security reasons, this research only includes unclassified information.  The programs 

included within the database represent those of the highest interest to the government and 

public. 

 As noted by previous research discussed in the literature review, the data contained 

within the SARs is frequently used by the DoD to research cost and schedule growth in the 

acquisition environment.  The database and reporting instructions for the SARs have been 

improved upon over the decades since its inception; however, prior research still notes difficulty 

in using the data.  Most recently Jimenez et al. (2016) had to filter 80 programs from the 

database due to missing information regarding IOC alone—a very important program date.  

Research conducted into the shortfalls of the SAR database was conducted by Hugh (1992) to 

identify the issues and potential causes for those issues.  The researchers identified the most 

notable problems to be exclusion of significant elements of cost and constantly changing 

guidelines, among others.  Hugh (1992) concludes, however, that even though SAR data have a 

number of limitations, they are suitable for identifying broad based trends across program.  With 

this in mind, the SAR database remains an appropriate source of data for the research we 



22 
 

conduct. 

     Inclusion Criteria 

 The inclusion criteria for this research is any program in the DoD, to include all service 

branches, which have reported program information using program SARs.  Additionally, this 

research focuses on only programs which are unclassified and reportable in the DAMIR 

database.  These include high interest defense acquisition programs spanning from the 1960’s to 

today. 

     Exclusion Criteria 

 This research has three exclusion criteria for the first portion of our analysis, as well as a 

fourth criteria that is applied only to the logistic analysis portion of this research.  Each criteria 

is imperative to this research in order to create a robust and useful tool for use in the acquisition 

community.  The criteria are outlined in detail in this section.  Tables depicting the exclusion 

criteria, as well as the number of programs removed due to each criterion, are detailed in 

chapters four and five of this thesis. 

 The first exclusion criterion is that the program must contain a MS A date in the 

schedule portion of the SAR as well as contain corresponding cost information for MS-A.  It is 

important to note that an exception to this is criteria is specifically detailed in the Key Data 

Assumptions portion of this chapter.  The purpose of this exclusion criterion is to ensure that 

programs include information for three important predictor variables: MS-A to MS-B Duration, 

RDT&E $ (M) at MS-B Start, and % RDT&E Funding at MS-B Start.  These variables are 

defined in Appendix B. 

The second exclusion criteria is that the program SAR must contain a MS B date and 

corresponding funding information.  This again pertains to the necessity of containing pre-MS 
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B data as a means to build a highly predictive model.  Without the MS B date and funding 

information, we are unable to ascertain the duration of MS A or the funding spent up to MS B.  

Additionally, we are unable to calculate the projected funding needed to reach IOC, or the 

projected duration of MS B to IOC. 

 The third exclusion criterion is that all program SARs must contain an IOC date that has 

occurred prior to the latest reported SAR.  We choose to include only these programs for 

several reasons.  First, Jimenez’s research uses IOC as a termination date for their predictive 

model and, as one objective of our research is to re-validate the model developed in his 

research, we continue to use this as the termination date.  Second, the SAR database includes 

information on all programs of great importance to congress, even if the program was 

terminated.  By requiring the programs we include to have an IOC date that occurs after the last 

SAR report date, and corresponding cost information, we assure that each program is completed 

at least up to this point.  Third, Kozlak (2016) found that, on average, programs experienced 

91% of their cost growth at IOC.  While we do not know if this finding translates to schedule 

growth being similarly realized at this point, it leads us to believe IOC may be a good 

termination point for our schedule model.  Additionally, by using IOC, our cost model has a 

predictive termination point. 

 The fourth exclusion criterion, which is only applied to the logistic analysis of this 

research, is that the program must have a SAR with a cost and schedule estimate within one 

year of MS B.  This is critical to our logistic regression analysis because it gives us the current 

cost and schedule estimates, at MS B, to compare to the actuals at IOC.  This, in turn, allows us 

to use the numbers to determine whether the program experienced a significant or critical 

overrun of their current MS B estimates and allows us to place them into “buckets” for analysis 
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as explained later. 

     Database Population 

 Due to the dual nature of our research, we have two separate databases that are 

analyzed, one being a subset of the other.  We outline, in detail, how each database is populated 

in Chapter IV and V of this thesis.  The first database in Chapter IV includes 73 programs and 

was populated using past research, most recently Jimenez et al. (2016), as well as program 

SARs accessed through DAMIR.  This database is built using three exclusion criteria.  The 

second database in Chapter V includes 49 programs and is a subset of the first database.  This 

database is built using four exclusion criteria. 

     Validation Pool 

 In order to test and validate that our multiple regression models perform the way they are 

intended, and to ensure we did not erroneously build a predictive model that only predicts the 

specific programs it was built on, we must randomly set aside 20% of the programs contained 

within our database to test the models after they are built.  This means that 15 programs are not 

used to build the predictive models, but instead are used after the models are built to test how 

accurately the models perform when applied to new data.  We discuss how this test is 

performed in detail in a later section.  Once the model is validated against the validation pool 

and found to be sufficient, these programs are re-inserted into the whole database and the model 

is recreated using all programs to create the most representative model possible.  It must be 

noted that the logistic regression models do not follow this validation method due to the small 

sample size. 
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     Key Data Assumptions 

 There are several key assumptions made throughout this data gathering process.  The 

most important assumption concerns the SAR not containing a Milestone A date outlined in the 

program schedule.  In this case, if the funding profile contains a funding date at least one year 

prior to the start of Milestone B, we assume that Milestone A occurred in January of the earliest 

funded year.  January is identified as the most appropriate month because continuing resolution 

authority (CRA) is a typical issue which the DoD has to contend with and, consequently, 

programs are unable to spend funding if they are a new start (which is the definition of a 

program at Milestone A) until a presidential budget is signed.  This generally occurs in January, 

instead of October, and programs are allowed to start spending funding and sign contracts 

above what they were previously allocated.  There are 15 programs in our database identified as 

not having a Milestone A date, but having pre-Milestone B funding. 

 To track these programs, and to detect if they are statistically different from the other 

programs in the database, we created a separate variable.  This variable is called “no MS-A 

date” and its sole purpose it to determine if these programs can be included in the research due 

to this assumption. 

Since many of the SARs within the database span different eras of DoD acquisition, 

several milestones and requirements follow different naming conventions than we use today.  

For our study, we consider Milestone II equal to Milestone B based on their corresponding 

definitions and only refer to this point in the program’s life-cycle as MS-B in our study, which 

is consistent with former studies (Harmon, 2012).  The same holds true for Milestone I and III 

being equivalent to Milestone A and C respectively. 

We assume that, if the program created a prototype, it would be mentioned in that 
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programs SAR.  If a prototype is not mentioned, then it is assumed no prototype was created.  

This is because whether or not a program created a prototype is not a required reporting item 

and we have no other official data source to tell if one was ever created.  Additionally, for 

aircraft programs only, if first flight is prior to MS-B then it is assumed this first flight was 

conducted by a prototype since research and development is not concluded at this point and that 

first asset must be a “proof of concept” asset. 

  It is assumed that the SARs are not only accurate and representative, but also all 

inclusive.  This means that the programs identified in DAMIR as being applicable to this 

research are not only representative of DoD programs in general, but are accurate and unbiased 

by those who entered the information into the reports.  It also means we assume all RDT&E and 

Procurement costs are included in the data.  

Response Variables 
 

 A response variable is the dependent variable in an equation; in our case, it is the variable 

that we predict using several input, or predictor, variables.  The costs within our database are 

expressed in Millions of dollars ($M) and would be analyzed the same in our model if not for 

the issue of homoscedasticity.  As discussed in the ensuing chapter of this research, we must 

transform our response variable using the natural log in order to reduce the high level of 

variability in the cost of a program.  

For our multiple regression model conducted in JMP®, our cost response variable is as 

follows: 

• Cost from MS-B to IOC BY17 ($M) [Regression Output] 
o This variable states the actual cost (both RDT&E and Procurement) from the 

beginning of MS-B to IOC in BY17.  This data is unavailable to the cost 
estimator at the time they are developing a cost estimate.  This variable is 
transformed using a natural log and the output is re-transformed to give the 
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median output as expanded upon later in this thesis. 
 
For our Logistic regression models we use three separate response variables, analyzed 

two ways each.  The response variables will identify the programs that meet the requirements 

for being considered in the given response.  These variables are as follows: 

• Group I [Regression Output] 
o This variable states that the program cost and schedule estimate at MS B is 

within the threshold limit of the actual cost and schedule duration at IOC.  There 
are two thresholds analyzed, one being significant (15% over the current APB) 
and the other is critical (25% over the current APB).  This is used to label these 
programs as not oing their current Acquisition Program Baseline (APB) threshold 
when compared to the actual at IOC 

 
• Group II [Regression Output] 

o This variable states that either the program cost or schedule estimate, but not 
both, at MS B overruns the threshold limit of the actual cost or schedule duration 
at IOC.  There are two thresholds analyzed, one being significant (15%over the 
current APB) and the other critical (25% over the current APB).  This is used to 
label the programs as overrunning only one, non-identified, threshold when 
comparing their current APB versus the actual at IOC. 

 
• Group III [Regression Output] 

o This variable states that bot the program cost and schedule estimate at MS B 
overrun the threshold limit of the actual cost and schedule duration at IOC.  
There are two thresholds analyzed, one being significant (15% over the current 
APB) and the other critical (25% over the current APB).  This is used to label the 
programs as overrunning both thresholds when comparing the current APB to the 
actual at IOC. 

 
Predictor Variables 

 

 Leveraging the research we analyzed in our literature review we identify many candidate 

predictor variables for predicting program cost which can then be used in the logistic analysis 

for cost and schedule overruns.  We recognize that the same variable may be found to be 

predictive of both cost and schedule; as the models are calculated independently, this is of no 

concern.  It is imperative that the predictor variables contain a logical relationship to the 

variable which they predict in order for the model to be of any use to the community.  By 
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following only logical leads, we maximize our chances of discovering causal relationships 

instead of stumbling upon simple corollary predictors that are indefensible and a matter of 

simple chance.   

 In order to protect against non-constant variance in the cost model, due to the large range 

in dollar values present in the predictor variable, we analyze the histogram of program costs in 

order to determine natural break points in the data.  This allows us to discretize the data by 

placing the programs into “bins” labelled as small, medium, large, and extra-large programs 

depending on the break points determined in the data.  In order to remove any researcher bias 

from the analysis of the histogram, the interquartile values and the mean are used to determine 

the values that are contained within each bin. 

 We clearly define each one of our predictor variables examined in this study, to include 

the units, variable type, and, if necessary, how this variable is calculated or obtained.  To be 

included in our final regression model, described in detail in Chapters IV and V of this thesis, 

the predictor variables must also demonstrate a level of significance using the Holm-Bonferroni 

Correction technique at 𝛼𝛼 = .10 in addition to being logically related to the response variable.  

Each predictor variable is found across all programs in our database.  The predictor variables, 

with definitions, are outlined in appendix B. 

Multiple Regression Analysis 
 

 The culmination of the entire data gathering process is building the regression models to 

predict the response variable.  Analysis is performed individually for each model, and the 

results are independent from one another.  To begin this process we test the desired response 

variable and include every predictor variable we have gathered following a mixed direction 

stepwise regression analysis.  We set our Type I error to be 0.1 in lieu of 0.05 as this research is 
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more exploratory instead of explanatory.  This technique allows us to identify the most 

predictive variables that we have at our disposal immediately.   

The variables are scrutinized by their individual p-values when determining which 

variables to keep in the final model.  We analyze them using the Holm-Bonferroni criteria, 

which is a technique to ensure we do not violate the overall experiment error rate for the model; 

again, our Type I error is 𝛼𝛼 = .10.  This method allows us to avoid over-fitting our regression 

output by including more predictor variables than are relevant without excluding others that are 

borderline variables.  

When analyzing the performance of a regression output, two particularly good measures 

of how well the model performs are the 𝑅𝑅2 and Adjusted 𝑅𝑅2 values.  The 𝑅𝑅2, also known as the 

coefficient of determination, is a measure of how well the model predicts the regression output.  

In other words, it is a measure for how much variability present in the data is explained by the 

regression equation.  The Adjusted 𝑅𝑅2 value is a modified version of 𝑅𝑅2, the difference being 

that Adjusted 𝑅𝑅𝟐𝟐 accounts and adjusts for the number of predictor variables in the model.  

These two outputs are what the performance of our models are judged by.  A value of one 

means that the model perfectly predicts the output and zero variability is left unexplained, while 

a value of zero, conversely, means that there is no predictive capability in the model and 100% 

unexplained variability present.  Naturally, the aim of this research is to obtain 𝑅𝑅2 and Adjusted 

𝑅𝑅2 values as close as possible to one. 

Once the variables are finalized, we build the model, use the outputs to perform the 

requisite tests identified, and subsequently validate the model as described later in this chapter.  

The model is only valid for the purposes of this research if it passes all identified tests and is 

validated by the validation pool using the identified techniques.  We follow this process for 
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both the schedule and the cost model. 

Checks and Tests Performed 
 

 In order to build relevant and statistically significant multiple regression models, several 

statistical tests must be performed and techniques must be applied.  By performing the 

following tests, which we overview in this section and apply in Chapter IV, we ensure that our 

model is robust.  These tests are performed after a suitable regression model is created; their 

purpose is to validate that the model is statistically sound and that it is applicable to the data 

used to create the model by isolating and examining any peculiarities in the data that may 

invalidate our model.   

     Variance Inflation Factors 

 Once the model is built, the analysis commences with analyzing the variance inflation 

factor (VIF) scores of each predictor variable that is deemed statistically significant.  The VIF 

measures how much multicollinearity has increased the variance of an estimate, meaning that it 

measures and indicates the magnitude that a single predictor variable influences the outcome of 

a multiple-regression model (Stine, 1995). 

     Cook’s Distance 

 This test is used to detect overly influential data points within the dataset that are possibly 

skewing the results.  Cook’s Distance is commonly used in multiple regression analysis to 

interpret each data point’s influence on the regression results and can easily highlight outliers 

through a graphical interface and a corresponding “score” for each data point between 0 and 1.  

An overly-influential data point can be potentially harmful in a regression model, due to the fact 

that it over-fits the regression output to include that one instance.  In essence, it influences the 

model to behave more like the one observed outcome than the population as a whole.  When 
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utilizing Cook’s Distance, we are alerted to any possible points which need to be analyzed more 

closely by a score of between .1 and .5.  It is probable cause for removal of a data point if the 

Cook’s Distance score is greater than .5—meaning that the model is entirely dependent on that 

one point and may not be applicable to any future scenarios (Cook, 1977).  This would clearly 

render our model useless to the acquisition community. 

     Studentized Residuals 

 The histogram of the studentized residuals is analyzed to detect any potential outliers in 

the data.  For our research, any data is considered to be a potential outlier if the studentized 

residual is greater than three standard deviations from the mean.  This prompts us to analyze the 

points further to determine if there is an issue with the data, such as a transcription error or a 

program, which is not properly accounted for in our data set, and can indicate that a data point 

may be removed.  Any points that reside three or more standard deviations from the mean are 

analyzed, and their inclusion or removal is discussed and defended in detail in Chapter IV. 

     Shapiro-Wilk’s Test 

 In order for our multiple regression models to be valid and, therefore, useful to the 

community they are designed to serve, they must pass the Shapiro-Wilk’s (S-W) test of the 

assumption of normality.  The S-W tests whether the residuals in our set come from a normal 

distribution or not.  The assumption that the residuals come from a normally distributed 

population is one of two key assumptions to building a regression model and, if our models do 

not pass this test, they are considered unusable to predict the outcomes.  The null hypothesis for 

the S-W test is that the residuals from our model are normally distributed; the alternative 

hypothesis is that they are not.  We test this at a threshold of α = .05.  If the p-value for the test 

is larger than .05, then we satisfy the assumption of normality for our models (Neter et al., 
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1996:111).   

     Breusch-Pagan Test 

 The second of the two key assumptions of any multiple regression model is that it 

contains constant variance.  The Breusch-Pagan (B-P) test is used to statistically prove whether 

a model exhibits constant variance or not.  In order for our models to be valid in predicting their 

respective outcomes, the variance from the errors in the model must not be dependent on the 

independent variables (Neter et al., 1996:239).  This test is used to determine whether 

heteroscedasticity is present in the model, which identifies the variance in the model created as 

being non-constant and, therefore, identifying an issue with using those predictor variables in 

our model.   

 In order to pass the assumption of constant variance we use a p-value of α = .05, 

meaning we must obtain an output from the B-P greater 0.05.  This ensures our model is robust 

and the variables we use are truly predictive of the output. 

Validation of Models 
 

 The closing test for our model is to test it against the validation pool, which contains 20% 

of the total programs analyzed, that was removed prior to beginning the multiple regression 

analysis.  To conduct the validation we must measure how well our model predicts the 

individual outcomes of each program in the validation pool against the actual observed 

outcomes.  To do this we run the validation pool through the cost and schedule models to 

collect the outputs.  We analyze the Absolute Percent Error (APE) of each program’s outputs.  

The APE is equivalent to: 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑂𝑂−𝑃𝑃𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑂𝑂
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑂𝑂𝑉𝑉𝑉𝑉𝑉𝑉𝑂𝑂

.  From the APE values we calculate the 

Mean APE (MAPE) and Median APE (MdAPE) values.  We compare these values to the 
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MAPE and MdAPE of the programs that the models were built on.  They should be similar if 

the models are predicting properly. 

 Once the values are compared an actuals by predicted bivariate plot is created for both 

the validation pool as well as the model building pool.  These plots are analyzed for behavioral 

consistency between the two data pools.  If they pass scrutiny then the predictive models are 

complete; the data pools are combined and the final models are created. 

Combination of Cost and Schedule 
 

 The culmination of this research is to analyze the cost and schedule of a program from a 

longitudinal standpoint.  This means that we identify each program for meeting their cost and 

schedule estimates, from MS B to IOC, compared to the actual cost incurred from MS B to IOC 

using the threshold values identified in a Nunn-McCurdy breach.  These breach thresholds are 

15 and 25% when considering the estimate at MS B to be the current APB. 

 We analyze these programs and their outputs based on four categories.  Each threshold is 

analyzed independent of the other and, while one is a subset of the other, we do not analyze 

them simultaneously.  Programs enter into each category based whether their MS B estimates 

overrun the actual multiplied by the threshold.  The first group includes programs that have not 

overrun either schedule or cost.  The second group includes only programs that have overrun 

either cost or schedule, but not both.  The final group includes programs that have overrun both 

cost and schedule.  What this allows us to do is analyze and identify common factors inherent in 

each program that may lead them to be included in either group.  The application of this 

knowledge allows decision makers to identify potential problem programs as well as potential 

over performers.  There is also the potential to identify characteristics that may lead to only a 

cost or only a schedule overrun, but not both. 
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 To conduct our logistic regression analysis, we not only have to identify which bins each 

program belongs to, we must transform each continuous variable into a nominal variable, 

coding the positive response with a one and the negative response with a zero.  This simplifies 

the analysis and application of the logistic models, allowing us to readily interpret the odds 

ratios.  To do this, we analyze each continuous variable for the programs contained in each bin 

separately to identify points that indicate a trend in the data.  This process is explained in 

further detail in Chapter V of this thesis. 

Summary 
 

 Using the findings in our literature review, we built a set of predictor variables that form 

the backbone of our analysis.  This enables us to intelligently defend the use of variables we 

find predictive of either response variable and argue a logical link between them.  We outlined 

our collection of data in order to develop a more robust dataset and ensure applicability to a 

wider user community.  We also provide systematic instructions for the data analysis and 

model-building process, which enables the process to be reconstructed while also defending our 

procedures.  In Chapter IV, we put the theory into action to demonstrate the results of our cost 

model analysis.  In Chapter V we use the estimates and thresholds to categorize the programs 

and use logistic regression to calculate the probability of a program identifying with each 

group.  In Chapter VI we discuss our results and how they answer our research questions, as 

well as what our recommendations are for using this research and any future research, related to 

this research, that should be accomplished.   
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Modeling Median Will-Cost Estimates for Milestone B to IOC in Defense Acquisition 
Programs 

 

Abstract 

 

 The introduction of “should cost” in 2011 requires all Major Defense Acquisition 

Programs to create efficiencies and improvements to reduce a program’s “will-cost” estimate.  

Realistic “will-cost” estimates are a necessary condition for the “should cost” analysis to be 

effectively implemented.  Due to the inherent difficulties in establishing a program’s will-cost 

estimate, we propose a new method to infuse realism into this estimate.  Using historical data 

from 73 Department of Defense programs as recorded in the Selected Acquisition Reports, we 

utilize mixed stepwise regression to predict a program’s cost from Milestone B (MS B) to initial 

operational capability (IOC).  Our presented model explains 83% of the variation in program 

acquisition cost.  Significant predictor variables include: projected duration (months from MS B 

to IOC); the amount of Research Development Test and Evaluation (RDT&E) funding spent at 

the start of MS B; whether the program is considered a fixed wing aircraft; whether a program is 

considered an electronic system program; whether a program is considered ACAT I at MS B; 

and program size relative to the total program’s projected acquisition costs at MS B. 
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Modeling Median Will-Cost Estimates for Milestone B to IOC in Defense Acquisition 

Programs 

 

Introduction 

 

 On June 15, 2011 the Under Secretary of Defense for Acquisition, Technology, & 

Logistics (USD (AT&L)) directed the Military Departments and Directors of Defense Agencies 

via a memorandum (see Appendix A) to implement Will-Cost and Should-Cost management for 

all Acquisition Category (ACAT) I, II, and III programs.  In this memorandum, the USD 

(AT&L) reiterates that the Departments will continue to set program budget baselines using non-

advocate Will-Cost estimates.  A Will-Cost estimate uses traditional cost estimating techniques 

(e.g. analogy, bottom-up, parametric, etc.) to estimate the most-likely cost of a program in order 

to establish a reasonable budget baseline and acquisition program thresholds.  However, the USD 

(AT&L) also “challenges program managers to drive productivity improvements into their 

programs during…program execution by conducting Should-Cost Analysis,” which involves, 

“identifying and eliminating process inefficiencies and embracing cost savings opportunities.” 

(Carter & Mueller, 2011, p. 16).  The Should-Cost estimate therefore deviates below the Will-

Cost estimate to develop a realistic price objective for negotiation purposes and subsequent 

savings against the Will-Cost estimate. 

 Additionally, the USD (AT&L) states in the same memorandum that, “the main problem 

with the will-cost estimate isn’t in the numbers or how it was reached; the problem is that once 

the will-cost estimate is derived and the budget for the program is set, historically, this figure 

becomes the “floor” from which costs escalate, rather than a “ceiling” below which costs are 
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contained—in many ways creating a self-fulfilling prophecy of budgetary excess.” (Carter & 

Mueller, 2011, p. 16).  We suggest that perhaps there is a better way to infuse realism into a 

Will-Cost estimate such that it becomes a middle of the road estimate from which to work from 

in the Should-Cost approach rather than the floor. 

 Therein lies the crux of the problem; how does one go about generating a median ‘Will-

Cost’ estimate?  Defense acquisition programs expand the frontiers of today’s technology to 

develop new and innovative systems that provide an asymmetric advantage on the battlefield.  

As a result, there are inherent uncertainties and risks associated with Department of Defense 

(DoD) acquisitions.  These realities are manifested in the derivation of the program’s cost 

estimate.  To combat risk and uncertainty, cost analysts tend to err on the side of caution and 

unnecessarily inflate the cost estimate to capture more of the risk.  This method needlessly ties 

up precious resources that may be better placed elsewhere.  By contrast, building an overly 

aggressive cost estimate may free up resources to be placed elsewhere.  However if this estimate 

is exceeded, decision makers could take critical funding from other programs or force a program 

manager to delay the program until additional funding can be secured. 

 In order to combat these issues, programs should strive for a realistic, middle ground 

point—essentially an empirically validated baseline.  The use of historical data allows the 

acquisition community to unbiasedly analyze and to estimate what a program would cost in 

relation to other similarly completed programs.  This estimate then becomes a powerful tool 

from which the user can identify a target cost for a given program.  This estimate also serves as a 

benchmark to identify whether a cost estimate is reasonable given what has occurred in the past.  

From this estimate, mitigation of risks associated with over- and under-estimating program costs 

may be achieved resulting in a more efficient allocation of resources.  Thus, we propose a new 
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empirically-based model for determining Will-Cost estimates in DoD acquisition programs. 

 

Past Research and Database Creation 

 

 Our research is intended to build an empirically derived model to predict median Will-

Cost estimates for DoD acquisition programs.  We utilize prior research to identify potential 

explanatory variables in our model and establish the basis for creating our dataset.  Our literature 

review spans the change in acquisition taxonomy from Milestone I, II, III to Milestone A, B, C.  

For this study, we consider Milestone I, II, and III to be equivalent to Milestone A, B, and C, 

respectively.  This is consistent with prior literature findings that the naming convention has 

simply altered over time without tangible changes in definition or substance (Harmon, 2012; 

Jimenez, White, Brown, Ritschel, Lucas, & Seibel, 2016).  Prior to relaying our data collection 

process, we first discuss recent studies pertinent to our research.  Using these studies, we build 

the foundation for how we conduct our research into the relative program characteristics that 

predict program cost. 

 Jimenez et al. (2016) developed a schedule duration prediction model for defense 

acquisition programs using pre-MS B data; we leverage their research to identify explanatory 

variables for investigation and an initial dataset from which to draw upon.  Their analysis 

concluded the following variables were significant in establishing an empirical benchmark for 

“Should Schedule” estimates: amount of RDT&E dollars (in millions) at MS B start, the percent 

of RDT&E funding at MS B start, whether a program is a modification, and whether a program 

has a MS B start in 1985 or later to be significant variables.  Although they explored and adopted 

significant variables to predict program schedule using pre-MS B data, they also considered a 
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plethora of explanatory variables that were ultimately deemed statistically insignificant; we also 

consider these variables. 

 Brown, White, Ritschel, & Seibel (2015) first identified the MS B start in 1985 or later as 

an explanatory variable.  They demonstrate that programs with a MS B start date in 1985 or later 

have a statistically significant change in their expenditure profile.  These programs tend to 

expend a greater percentage of their obligations by the program’s mid-point than the programs 

that start prior to 1985.  Although not conclusive, Brown et al. (2015) hypothesized that the 

reason for this significant shift is due to the President’s Blue Ribbon Commission on Defense 

(often referred to as the Packard Commission) and the acquisition reforms that occurred due to 

the recommendations of the commission. 

 Similar to Jimenez et al. (2016), Deitz, Eveleigh, Holzer, & Sarkani (2013) analyzed 

acitivities prior to MS B.  They examined the importance of developing a robust Analysis of 

Alternatives prior to MS B and the effects that an analysis of this nature may have on program 

success.  Their findings suggest that while only 10% of a program’s lifecycle cost was invested 

prior to MS B, 70% of a program’s lifecycle costs are committed by this milestone (Deitz et al., 

2013).  This suggests to us that pre-MS B data may be very important to predicting program cost.  

However, this also limits data collection because pre-MS B reporting is not mandatory for all 

acquisition programs and therefore the cost and schedule data is unavailable in some instances.  

Jimenez et al. (2016) also experienced such a limitation. 

 Looking slightly further back in the literature, we find other pertinent studies that present 

possible explanatory variables to consider.  Foreman (2007) researched methods to improve cost 

and schedule growth estimates by including longitudinal variables that account for changes that 

take place over time.  His research built upon the database initially comprised by Sipple, White, 
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& Greiner (2004) and subsequently modified by Lucas (2004) and Genest & White (2005).  

Sipple et al. (2004) found the most important predictive variables of cost growth to be were MS 

C to IOC duration and an indicator variable for a MS C slip. 

 The aforementioned researchers have identified numerous variables for investigation on 

whether they will be predictive of program cost.  The complete list is in Appendix B.  This list 

also gives us our data inclusion and exclusion criteria.  The initial data inclusion criteria is any 

program in the DoD (i.e., all service branches) which have reported program data using the 

Selected Acquisition Reports (SAR).  Additionally, they must be unclassified and reported 

within the Major Defense Acquisition Program (MDAP) and pre-Major Defense Acquisition 

Program (pre-MDAP) section of the Defense Acquisition Management Information Retrieval 

(DAMIR) database. 

For a program to be considered in our study, it must satisfy three criteria; otherwise, it is 

excluded for this research.  The first requirement is that the program SAR must contain a MS A 

date or funding at least one year prior to MS B – we interpret the pre-MS B funding as indicating 

the year in which MS A may have occurred.  This requirement is due to the pre-MS B data being 

found predictive in the literature review.  Unfortunately, this requirement also results in a great 

deal of programs being ineligible for inclusion because a lack of reporting requirements prior to 

MS B.  This is not unexpected considering a program is not official until meeting MS B. 

We are able to include 15 programs in our dataset by making the following assumption 

when there is no MS A date provided: if there is funding in the funding profile at least one year 

prior to MS B, then MS A occurred in January of the year in which funding was first received.  

We test this assumption to ensure they are not statistically different from the others prior to 

inclusion in the final dataset; as we’ll see in the methodology section, they are deemed 
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statistically equivalent. 

The second exclusion criteria is that the program SAR must contain a MS B date and 

corresponding funding information.  This again pertains to the necessity of containing pre-MS B 

data as a means to build a highly predictive model.  Without the MS B date and funding 

information, we are unable to ascertain the duration of MS A or the funding spent up to MS B.  

Additionally, we are unable to calculate the projected funding needed to reach IOC or the 

projected duration of MS B to IOC. 

The third exclusion criteria is that the program SAR must contain an IOC date that 

occurred prior to the last reported SAR which indicates that the program is complete up to IOC.  

This is important to our research as it gives us a termination point to estimate and ensures we are 

not using projected values as actuals in our model.  IOC is a very important date in a program as 

it signifies the point in time when the user community can first begin to realize the benefits from 

the investment in the program. 

As previously discussed, our dataset starts with the 56 programs in the database built by 

Jimenez et al. (2016).  We augment this database by analyzing defense program SARs from the 

DAMIR system..  The program SARs contain program funding, schedule, and performance 

information relative to our research.  Using our stated inclusion criteria, we add 187 programs to 

the initial 56.  Then using the exclusion criteria, we remove 170 programs for a net change of 17; 

this results in a final program count of 73.  Table 1 demonstrates inclusion and exclusion criteria 

used in this research.  The list of all included programs is located in Appendix C. 
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Table 1: Program Inclusion / Exclusion Criteria and Counts 
Inclusion/Exclusion Criteria Programs Added Program Removed Program Count 

Jimenez’s Starting Database 56  56 

DAMIR Query and Addition 187  243 

Double Count Adjustment  29 214 

IOC Occurs after Last SAR  61 153 

Missing Milestones A or B  74 79 

Missing IOC  4 75 

Classified  2 73 

Total Remaining   73 

 

The data that we use for our analysis includes both actuals and projected values from the 

SARs.  We use the latest available program’s SAR to record the actual cost from MS B to IOC as 

the response variable in the model.  In order to develop a useful predictive tool for the 

acquisition community, we must only use projected cost and schedule data at MS B since this is 

the only data the user of our regression model will have at their disposal at that time.  This 

limitation ensures that we are not overly influencing our model by using data which will be 

unavailable to the user when they predict the actual program cost. 

In order to implement this limitation, we retrieve projected cost and schedule data from the 

SAR corresponding to the year in which MS B occurred or, if that SAR is unavailable, the 

earliest available SAR.  This allows us to use projected values to predict a program’s cost from 

MS B to IOC, the same as if we were in a program office attempting to estimate the cost of our 

program independent of this research. 

 

Methodology 

 

 To arrive at the presented model (explained in the next section), we use a mixed direction 
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stepwise approach to screen for the most predictive variables, and then finalize the model using 

ordinary least squares (OLS).  For our regression model, the response variable is the natural log 

of the acquisition cost (defined as the RDT&E and Procurement costs) from MS B to IOC.  We 

transform the response variable using a natural log function in order to mitigate against 

heteroscedasticity due to the large range of actual costs—without transforming the OLS 

residuals, we would have failed the assumption of constant variance at a level of significance of 

0.05.  To ascertain the actual cost estimate from the OLS model we re-transform the predicted 

output back to actual cost (in millions of BY 17 dollars) by calculating OutputOLSe .  This 

transformed model results in a median estimate of Will-Cost since this back-transformation 

equates to the median in the original space (Carroll & Rupert, 1981; Tisdel, 2006). 

As noted earlier, Appendix B lists and defines the predictor variables analyzed—recall that 

the predictor variables must be available to the cost estimator and relevant to program cost in 

order to be considered in this research.  As such, only actual data is used up to MS B, and 

projections are used after MS B.  In order to be included as an explanatory variable, it must have 

occurred in at least one of the 73 programs in our database.  Additionally, to eliminate the effects 

of inflation we convert all funding variables to BY17 using the 2016 OSD inflation indices. 

 We use JMP® Pro 12 for our statistical analyses and adopt an initial overall experiment 

wise Type I error of 0.1 due to the exploratory nature of this study.  To be consistent with this 

level of significance, we use a p-value threshold of 0.1 to enter and exit the mixed direction 

stepwise regression model.  Once the initial variables are identified by the stepwise procedure, 

we then use OLS to finalize the regression model.  We now lower the overall Type I to be 0.05 

and require each predictor variable to be statistically significant according to the Holm–

Bonferroni method, which counteracts the problem of multiple comparisons (Holm, 1979). 
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 Prior to conducting the variable selection procedure, we randomly select 20%, or 15, of 

the 73 programs and set these aside for utilization as a validation set.  We use the remaining 58 

programs for the stepwise and OLS regression analysis.  After validating our selected model, we 

perform another mixed stepwise analysis using the entire dataset of 73 programs to determine if 

we inadvertently left out a predictive variable. 

 For our model to be considered viable, we must verify the standard OLS assumptions.  

First, we use only one final SAR per program to record the actual cost and schedule information 

in addition to an earlier SAR for that program to ascertain the projected information—this 

assures independence.  To assess the assumptions of homoscedasticity and normality of model 

residuals, we conduct a Breusch-Pagan (B-P) and Shapiro-Wilk (S-W) test, respectively, at a 

level of significance of 0.05.  To assess multicollinearity between the predictor variables we 

examine their variance inflation factors (VIF).  The VIF score must be below 10 in order for us 

to say with confidence that multicollinearity is not a factor in our model.  To guard against a 

program being overly influential to the outcome, we employ Cook’s Distance.  A Cook’s D 

value greater than 0.5 indicates the model is being overly influenced by a variable in one of the 

programs (Neter, Kutner, & Nachtsheim, 1996, p. 381). 

 After all the underlying model assumptions are assessed and passed, we test our resultant 

model against the validation pool using descriptive and inferential measures.  Regarding 

descriptive measures, we compute the absolute percent error (APE), which is the absolute 

difference between the true cost between MS B and IOC and the predicted cost divided by the 

true cost for each program.  Note, the true and predicted costs are evaluated in the natural log 

space.  Using these APE values, we then calculate the median and mean APEs (MdAPE and 

MAPE, respectively).  We calculate these for both the validation and modeling programs and 
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compare the values.  Finally, we investigate whether the untransformed predicted values truly 

reflect the median value or a baseline estimate for Will-Cost by investigating how the true 

program cost compare to the predicted program cost. 

 

Analysis 

 

 Using mixed stepwise regression on the modeling set of 58 programs, we develop a 

preliminary model—Table 2 highlights this model.  The presented model has an R2, which 

represents the amount of variability in the data explained by the model, of 0.82.  We calculate the 

APE values for this model which results in an MdAPE and MAPE of 0.050 (5.0%) and 0.059 

(5.9%), respectively, for the model building set.  For the validation set, we obtain an MdAPE and 

MAPE of 0.056 (5.6%) and 0.079 (7.9%), respectively.  Although the validation set is slightly 

higher than the model building set, all of the absolute percent errors are less than 10% suggesting 

the model is performing well. 

 

Table 2: Preliminary Ordinary Least Squares Model 
Predictor Variable Estimate P-Value Standardized 

Estimate 

Variance 

Inflation Factor 

Intercept     5.731 < 0.0001 N/A N/A 

Projected MS B to IOC (months)     0.0114    0.0033 0.199 1.13 

RDT&E $ at MS B Start     0.00029    0.0003 0.297 1.56 

Fixed Wing     0.620    0.0037 0.199 1.17 

Electronic System Program   −0.732    0.0142 −0.216 1.96 

ACAT I     0.837    0.0346 0.160 1.47 

Large Program     0.747    0.0018 0.251 1.58 

Extra Large Program     1.205 < 0.0001 0.397 2.16 
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 With respect to the inferential measures, Table 2 reveals that all VIF scores are below or 

close to two indicating little to no evidence for multicollinearity.  The preliminary model also 

contains no Cook’s D score above 0.50 (highest value is approximately 0.10).  This suggests no 

overly influential data points affecting the p-values of our explanatory variables.  Model 

residuals pass both assumptions of normality and homoscedasticity with p-values of 0.25 and 

0.92 for the S-W and B-P tests, respectively.  Lastly, all explanatory variables are individually 

significant at the comparison-wise error rate under the Holm–Bonferroni criteria (Holm, 1979). 

 With the model being deemed internally valid, we combine all the data together to update 

model parameter values using OLS and lowering the overall Type I error rate to 0.05.  Table 3 

shows the updated model.  Stepwise failed to detect any additional predictor variables (at the 

overall familywise error rate of 0.05 level of significance) and the resultant model described in 

the next section is our final model.  The resultant model has an R2 of 0.83 with an MdAPE and 

MAPE of 0.057 (5.7%) and 0.062 (6.2%), respectively.  This means that the presented model 

has a relative error of between 5.7% and 6.2% of predicting the natural log of the program cost 

from MS B to IOC.  After back-transforming to the original values of program cost from MS B 

to IOC, approximately 50.7% of the 73 programs in our database had a true program cost 

exceeding the predicted cost while 49.3% had less.  Theoretically, this ratio should be 50% / 

50%.  The empirical percentages suggest our presented model is performing as expected. 

 To prevent model extrapolation, the ranges in which this model is useful for the two 

continuous variables must be consistent with the bounds of the programs used within our 

analysis.  For projected duration from MS B to IOC the lower bound is 28 months while the 

upper bound is 129 months.  For RDT&E funding ($M) at MS B Start (BY17), the lower bound 

is $4.43M while the upper bound is $5979.4M.  Using this model outside of these ranges will 
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invalidate the results.  We now discuss the statistically significant predictor variables.  All of 

these variables are available to the cost estimator at the time the estimate is calculated (which is 

intended to be post-MS B). 

 

Table 3: Final Ordinary Least Squares Model 

Predictor Variable Estimate P-Value Standardized 

Estimate 

Variance 

Inflation Factor 

Intercept     5.449 < 0.0001 N/A N/A 

Projected MS B to IOC (months)     0.0108    0.0021 0.170 1.09 

RDT&E $ at MS B Start     0.00026    0.0007 0.220 1.50 

Fixed Wing     0.561    0.0039 0.165 1.19 

Electronic System Program   −0.635    0.0061 −0.191 1.77 

ACAT I     1.151 < 0.0001 0.251 1.38 

Large Program     0.758    0.0004 0.232 1.51 

Extra Large Program     1.461 < 0.0001 0.439 2.12 

 

• (Projected) MS B to IOC Duration—Continuous Variable 

The parameter estimate of this variable is 0.0108 which is multiplied by the number of 

months the program estimates to spend from MS B to IOC.  This duration does not 

necessarily correlate to the level of technology or technological maturity being employed, 

but, rather, indicates the cost of time in DoD acquisition. 

 

• RDT&E Funding ($M) at MS-B Start (BY17)—Continuous Variable 

The parameter estimate associated with this variable is 0.00026, which is multiplied by 

the actual, non-transformed RDT&E funding spent prior to program entrance into MS B.  

Since the amount of funding spent at this point is additive to total program cost, we 

suggest that the amount of funding spent prior to MS B is indicative of the projected size 
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and scope of the entire program.  This variable could indicate a greater investment in 

newer technology prior to MS B, which typically results in higher costs over the entire 

program life due to integrating and further maturing this technology. 

 

• Fixed Wing—Binary Variable 

The parameter estimate associated with this variable is 0.561 and will be multiplied by 

one for every aircraft (excluding helicopters) program estimate conducted.  The positive 

parameter estimate indicates that aircraft programs sans helicopters appear to be more 

expensive in general in contrast to other DoD platform programs.  We hypothesize this 

effect as an artifact of complexity associated with stealth, avionic, and engine capabilities 

of today’s modern aircraft, regardless of branch of service. 

 

• Electronic System Program—Binary Variable 

The parameter estimate associated with this variable is −0.635 and will be multiplied by 

one for any program that is considered an electronic system program.  The negative 

parameter estimate indicates these programs are statistically significantly cheaper to 

acquire than the other program types.  Bolten, Leonard, Arena, Younossi, & Sollinger 

(2008) also concluded that electronic systems are historically cheaper. 

 

• ACAT I—Binary Variable 

The parameter estimate for this variable is 1.151 and is multiplied by a value of one for 

any program considered to meet ACAT I funding estimate requirements at the start of 

MS B.  This variable being additive to program cost is logical due to the nature of ACAT 
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I programs and the dollar costs associated with these DoD acquisitions. 

 

• Large Program—Binary Variable 

The parameter estimate for this variable is 0.758 and is multiplied by a one if the program 

being estimated projects to have a total program acquisition cost greater than $7B (BY17) 

(RDT&E and Procurement) from MS A to program conclusion but less than or equal to 

$17.5B (BY17).  This value is estimated at MS B and was calculated using the 50% 

interquartile from a histogram analyzing total projected program acquisition cost.  The 

additive nature of this variable adjusts for large DoD acquisition programs. 

 

• Extra Large Program—Binary Variable 

The parameter estimate for this variable is 1.461 and is multiplied by a value of one if the 

program acquisition cost from MS A to IOC is projected to be greater than $17.5B 

(BY17).  This value is estimated at MS B and was calculated using the 75% interquartile 

from a histogram analyzing total projected program acquisition cost.  The additive nature 

of this variable adjusts for the largest DoD acquisition programs, such as the F-35 and F-

22. 

 

Discussion and Conclusion 

 

 Table 4 presents the relative percentage contribution of each variable included in the final 

model.  The smallest relative contribution is 9.9% for Fixed Wing aircraft while the largest 

relative contribution is 26.3% for Extra Large programs.  Besides these variables, there is low 
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variation between the remaining predictor variables in the presented model.  This suggests that 

the explanatory variables are relatively similar with respect to affecting the true program 

RDT&E and Procurement costs. 

 

Table 4: Predictor Variables and Their Relative Contribution to the Model 

Explanatory Variable Relative Contribution 

Projected MS B to IOC (months) 10.2% 

RDT&E $ at MS B Start 13.2% 

Fixed Wing 9.9% 

Electronic System Program 11.5% 

ACAT I 15.0% 

Large Program 13.9% 

Extra Large Program 26.3% 

 

 In addition to the significant predictor variables, it is also important to address the non-

significant variables that were expected to contribute to our model analysis.  The MS C Slip and 

Duration From MS C to IOC variables that were found to be significant in predicting cost 

growth by Foreman (2007) were not significant in predicting program cost from MS B to IOC.  

This finding allowed us to include the three satellite programs in our database since they do not 

have a MS C date within their SAR reports.  Additionally, as was found by Jimenez et al. 

(2016), we do not find any statistical significance in branch of service, and the only program 

type that is statistically different is Electronic Systems.  Lastly, modification, prototype, 

concurrency planned, and MS B start date in 1985 or later were not found to be statistically 

significant variables. 

 As with any statistical model, there are limitations to our regression model.  Principally, 

this model is based on data collected from SAR reports that sometimes contain incomplete 
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information.  Ultimately, the model is only as good as the data itself.  The availability of pre-

MS B data was a large constraint on the data building process and limited which programs 

could be included.  Additionally, the search parameters used in DAMIR may have inadvertently 

removed useful programs from our study which might have influenced any number of other 

variables to be significant. 

 One significant limitation is the high level of variability in the definition of IOC.  Our 

model uses IOC as a termination point due to the importance of this milestone in a program as 

well as the availability of the date.  In the programs we analyze, the number of units considered 

for attaining IOC varies greatly.  Achieving IOC is determined individually for each unique 

program based on an initial cadre of operators, maintainers, and support equipment that can 

employ and sustain the system in an operational environment.  For programs like satellites, 

submarines, and ships, IOC is generally considered to be very few, or even one single, unit.  In 

the case of missile programs, IOC could be in the hundreds.  This drives a level of known 

variability within our model that could be better accounted for by using a more structured and 

universal definition for IOC; this could be a topic for future research. 

 Accurately predicting program cost is both an art and a science.  Achieving accurate 

estimates during the early stages of a program’s lifecycle is an unenviable task, and one can be 

certain that the estimate will be wrong.  However, deriving an estimate that is close to the final 

actual cost is crucial to improving the allocation of scarce resources.  What our model provides 

is the empirical portion of the estimating process to ascertain the Will-Cost for a program.  We 

provide this tool to the DoD acquisition community primarily as a method to check the 

assumptions and realism of their program office estimate.  Being able to build a program cost 

estimate and turn to our statistically built and tested model for validation will be invaluable for 
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the community because it will allow for an injection of increased realism into the cost 

estimating process.  Realism in the Will-Cost median estimate is crucial to the success of 

Should-Cost analysis.  

 Drawing a difference between our research and prior research, the most notable 

difference is the model output.  Our research and model focuses on building an empirically 

based estimate for program cost between MS B and IOC in order to serve as a realistic 

benchmark (the median value) for what programs Will-Cost.  Program managers can then adopt 

“should cost” efficiencies to reduce cost further.  We believe that modeling an output that will 

serve as an actual point estimate is valuable as a crosscheck tool for the user community.  It 

gives the user a benchmark based on historical data against which the program measures its 

progress.  The model also supports the “will-cost and should-cost” requirement levied in 2011 

by providing an objective and defensible cost for what a program should actually cost based on 

what has been achieved in the past.  Ultimately, a quality will cost estimate provides a starting 

point for program managers to examine processes and find efficiencies that lead to reduced 

program costs. 
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Appendix A: Implementation of Will-Cost and Should-Cost Management 
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Appendix B: Predictor Variables Investigated in this Paper 
 

• MS A to MS B Duration (Months) – Continuous Variable 
o This variable indicates the total time it took in months for a program to 

complete MS A to MS B according to the last SAR date.  In this variable we 
are only concerned with actual schedule duration data available to the cost 
estimator at the time of MS B/EMD start. 
 

• Quantity Expected at MS B – Continuous Variable 
o This variable indicates the estimate of total quantity of weapons systems 

that were expected to be produced at MS B at the time of the last SAR 
date. 
 

• RDT&E Funding ($M) at MS B Start (BY17) – Continuous Variable 
o This variable is based on raw total RDT&E dollars (in millions) that were 

allocated to the program prior to MS B.  The dollars were all standardized 
into the base year when the research began (BY17). 
 

• (Projected) % of RDT&E Funding at MS B Start (BY17) – Continuous Variable 
o This variable is based on the percent of available RDT&E dollars 

allocated to the program before, and up to the start of, MS B.  While this 
variable is based on a percentage, the dollars that this percentage was 
derived from were all standardized into the base year when the research 
began (BY17). 
 

• (Projected) Total Program Acquisition Cost (BY17) – Continuous Variable 
o This variable is the total projected acquisition costs, from MS B to IOC, 

estimated at MS B or the earliest available program SAR.  It serves to 
identify how large a program is projected to be in terms of cost. 
 

• Modification – Binary Variable 
o This variable is identifies programs whose existence serves as a 

modification to a pre-existing weapons system.  If a weapons system is a 
modification, it does not necessarily mean it will not have pre-MS B data 
associated with it.  Every program is different and, therefore, it cannot be 
assumed that a modification will automatically start at MS B. 
 

• Prototype – Binary Variable 
o This variable identifies programs that create a prototype, or prototypes, 

of a weapons system before production of that weapons system begins.  
More than one type of prototype for a weapons system can be created in 
a given program. 
 

• Concurrency Planned – Binary Variable 
o This variable addresses planned concurrency in a given program prior to 

MS B.  Concurrency is the proportion of RDT&E dollars that are authorized 
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during the same years that Procurement appropriations are authorized.  The 
planned level of concurrency forces managers to make decisions that can 
lead to [schedule] growth if either too much or too little concurrency is 
accepted for a given program (Birchler, Christle, & Groo, 2011, p. 246). 
 

• 1985 or Later for MS B Start – Binary Variable 
o This variable accounts for a time series trend of programs that started their 

MS B in 1985 or later.  It is shown that programs which began development 
during 1985 or later (considered “contemporary”) expend a greater 
percentage of obligations by their schedule midpoint than the earlier pre-
1985 programs.  We attribute this difference to the President’s Blue Ribbon 
Commission on Defense (commonly called the Packard Commission) and 
the subsequent acquisition reforms. 
 

• Air Force – Binary Variable 
o This variable identifies if the lead service on the program was the 

United States Air Force. 
 

• Navy – Binary Variable 
o This variable identifies if the lead service on the program was the 

United States Navy. 
 

• Army – Binary Variable 
o This variable identifies if the lead service on the program was the 

United States Army. 
 

• Marine Corps – Binary Variable 
o This variable identifies if the lead service on the program was the 

United States Marine Corps. 
 

• Fixed Wing – Binary Variable 
o This variable identifies if the weapons system program is a fixed wing 

aircraft program, regardless of service it is associated with.  The criterion 
to qualify as a fixed wing aircraft is for that weapons system to maintain 
flight via fixed wings versus rotary wing flight. 
 

• Fighter Program – Binary Variable 
o This variable identifies if the weapons system program is a fighter 

program, or close variation thereof, regardless of service it is associated 
with. 
 

• Bomber Program – Binary Variable 
o This variable identifies if the weapons system program is a bomber 

program, or close variation thereof, regardless of service it is associated 
with. 
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• Helo Program – Binary Variable 
o This variable identifies if the weapons system program is a helicopter 

program, or close variation thereof, regardless of service it is associated 
with. 
 

• Cargo Plane Program – Binary Variable 
o This variable identifies if the weapons system program is a cargo plane 

program, or close variation thereof, regardless of service it is associated 
with. 
 

• Tanker Program – Binary Variable 
o This variable identifies if the weapons system program is a tanker plane 

program, or close variation thereof, regardless of service it is associated 
with. 
 

• Electronic Warfare Program – Binary Variable 
o This variable identifies if the weapons system program is an electronic 

warfare program, or close variation thereof, regardless of service it is 
associated with.  An electronic warfare program, as not to be confused with 
an electronic system program, differs greatly in its main function(s).  A 
description from Lockheed Martin makes the distinction that it involves the 
ability to use the electromagnetic spectrum – signals such as radio, infrared 
or radar – to sense, protect, and communicate.  At the same time, it can be 
used to deny adversaries the ability to either disrupt or use these signals 
(Electronic Warfare). 
 

• Trainer Plane Program – Binary Variable 
o This variable identifies if the weapons system program is a trainer plane 

program, or close variation thereof, regardless of service it is associated 
with. 
 

• Missile Program – Binary Variable 
o This variable identifies if the weapons system program is a missile program, 

or close variation thereof, regardless of service it is associated with. 
 

• Electronic System Program – Binary Variable 
o This variable identifies if the weapons system program is an electronic 

system program, or close variation thereof, regardless of service it is 
associated with.  This differs greatly from the previously described 
electronic warfare variable in that electronic systems programs are 
principally concerned with the electronic user interface of a system, 
avionics controls, or other similar applications that primarily support the 
electronic usability of a system, or system of systems. 
 

• Submarine Program – Binary Variable 
o This variable identifies if the weapons system program is a submarine 
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program, or close variation thereof, regardless of service it is associated 
with. 
 

• Ship Program – Binary Variable 
o This variable identifies if the weapons system program is a surface ship 

program, or close variation thereof, regardless of service it is associated 
with. 
 

• Satellite Program – Binary Variable 
o This variable identifies if the weapons system program is a satellite 

program, or close variation thereof, regardless of service it is associated 
with. 
 

• ACAT I – Binary Variable 
o This variable indicates if the program is an ACAT I program.  This is 

significant in that ACAT I programs deal with a much larger dollar amount 
and thus are more susceptible to cost and schedule growth by way of their 
large-scale and complexity efforts. 

 
• (Projected) MS C to IOC Duration (Months) – Continuous Variable 

o This variable indicates the total estimated time for a program to meet IOC 
from MS C according to the earliest available SAR estimate.  This variable 
has been found to be predictive of cost growth in the programs studied by 
Foreman (2007).  With this variable, we are concerned with giving the cost 
estimator the ability to enter in the projected duration, in months, of the gap 
between MS C and IOC to predict program cost. 
 

• (Projected) MS C Slip – Binary Variable 
o This variable indicates whether the program projected date for meeting 

IOC extends past the initial estimate.  Foreman (2007) has found that a slip 
in MS C is indicative of program cost growth in past research. 
 

• No MS A Date – Binary Variable 
o This variable identifies whether a program did not contain a MS A date in 

the schedule portion of the SAR, but did include funding at least one year 
prior to MS B.  This is used to identify these programs and test that they 
are not statistically different from the other programs and is not used in a 
predictive capacity. 
 

• Small Program – Binary Variable 
o This variable identifies whether a program’s projected total acquisition 

costs (RDT&E and Procurement) are below $3B.  This value is determined 
from analyzing the histogram of the (projected) total program acquisition 
costs of the programs in our study and coincides closely with the 25% 
value. 
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• Medium Program – Binary Variable 
o This variable identifies whether a program’s projected total acquisition 

costs (RDT&E and Procurement) are above $3B but below $7B.  This 
value is determined from analyzing the histogram of the (projected) total 
program acquisition costs of the programs in our study and coincides 
closely with the 25% to 50% range. 
 

• Large Program – Binary Variable 
o This variable identifies whether a program’s projected total acquisition 

costs (RDT&E and Procurement) are above $7B but below $17.5B.  This 
value is determined from analyzing the histogram of the (projected) total 
program acquisition costs of the programs in our study and coincides 
closely with the 50% to 75% range. 
 

• Extra Large Program – Binary Variable 
o This variable identifies whether a program’s projected total acquisition 

costs (RDT&E and Procurement) are above $17.5B.  This value is 
determined from analyzing the histogram of the (projected) total program 
acquisition costs of the programs in our study and coincides with the 75% 
value. 
 

 
• (Projected) % Complete at MS B Start – Continuous Variable 

o This variable is motivated by the % RDT&E variable and serves to project 
the percent that a program is complete, to IOC, when MS B occurs.  It is 
calculated by dividing the projected duration from MS B to IOC by the 
sum of duration from MS A to IOC and projected duration from MS B to 
IOC.  This serves to indicate where the program managers believe the 
program is in terms of schedule completeness.  It could indicate program 
maturity level. 
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Appendix C: List of Programs Used in the Research Database 
Number Program Number Program 
1 A-10 38 SSN 774 (Virginia Class Sub) 
2 AWACS 39 T-45TS 
3 C-17 40 UGM-109 Tomahawk 
4 F-22 41 SSBN 726 SUB 
5 AH-64 42 AGM-114A Hellfire Missile 
6 B-1B Computer Upgrade 43 OH-58D Helicopter 
7 C-5 RERP 44 AAWS-M Javelin 
8 F-15 45 SSN 21 Sub 
9 B-1B JDAM 46 AWACS Blk 40-50 Upgrade 
10 KC-135R 47 B-2 EHF Inc 1 
11 FA-18 A/B 48 C-5 AMP 
12 AV-8B Harrier 49 MQ-9 Reaper 
13 S-3A 50 AH-64E Remanufacture 
14 P-8 Poseidon 51 ATACMS-APAM 
15 V-22 Osprey 52 CH-47F 
16 E-2C Hawkeye 53 CSSCS (ATCCS) 
17 F-35 JSF 54 Longbow Apache (AH-64D) 
18 CH-47D Chinook 55 UH-60M Blackhawk 
19 E-8A JSTARS 56 AESA 
20 AGM-65A Missile 57 AGM-88E AARGM 
21 ALCM Missile 58 CEC 
22 AMRAAM Missile 59 E-2D AHE 
23 JASSM Missile 60 JSOW 
24 JDAM 61 LCS 
25 JPATS T-6A 62 LHD-1 
26 OTH-B 63 MH-60R 
27 LGM-118 Peacekeeper 64 MH-60S 
28 GBU-39 SDB-I 65 Strategic Sealift 
29 National Aerospace System 66 Trident II 
30 AGM-88 HARM 67 EA-6B ICAP III 
31 AIM-9X Block 1 68 JSIPS (CIGS) 
32 AN/BSY-1  69 NAS 
33 COBRA Judy Replacement 70 AFATDS (ATCCS) 
34 Harpoon Missile 71 AEHF 
35 NMT 72 EELV 
36 SH-60B 73 WGS 
37 UGM-96A Trident I Missile   
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V. Estimating the Likelihood of a Defense Acquisition Program Staying within Cost and 
Schedule Bounds 

 

 

Abstract 
 

 Program managers use prior experience to spot potential programmatic pitfalls and areas 

of concern.  Augmenting this experience with an empirical procedure, we present a method to 

estimate the likelihood of a program exceeding two important schedule and cost thresholds: 1) 

under 15 percent over the initial cost estimate from Milestone (MS) B to Initial Operating 

Capability (IOC), and 2) 15 percent under the initial length (in months) between MS B and IOC; 

the second bound being under 25% respectively with respect to cost growth and schedule 

slippage.  For our analysis, we use 49 Department of Defense programs.  Using logistic 

regression and odds ratios, we generally find that electronic system programs, extremely large 

programs (exceeding $17.5B in Base Year 2017 dollars), programs procuring smaller quantities 

of units, and programs with shorter schedules (less time from MS A to MS B and projected time 

from MS B to IOC) experience smaller percentages of cost growth and schedule slippage. 
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Estimating the Likelihood of a Defense Acquisition Program Staying within Cost and 

Schedule Bounds 

 

 

Introduction 
 

 In today’s fiscally constrained environment, we should use every tool at our disposal to 

contain cost growth and schedule slippage.  As good stewards of the taxpayer, it is our duty to 

ensure that Department of Defense (DoD) programs are fielded on time and on budget.  This also 

includes being aware of program characteristics that may lead to future cost growth and/or 

schedule slippage.  To investigate this, we employ a statistical technique that is often adopted in 

the biostatistical community–logistic regression.  Using this technique, we identify cost and 

schedule variables that may indicate a program will experience significant cost growth and/or 

schedule slippage.  Specifically, we consider cost and schedule growth levels consistent with the 

Nunn-McCurdy significant and critical breach thresholds since these percentages have been 

identified by leadership as being growth above and beyond anything that can be considered 

acceptable. 

 With this in mind, we categorize defense acquisition programs based on their cost and 

schedule performance at the time they meet Initial Operating Capability (IOC) versus what they 

estimated at Milestone (MS) B.  To this end, we consider a program to be “good” if they are 

within a specified percentage of their estimated cost and schedule and “bad” if they are not.  The 

intent of our research is to ascertain what factors may be statistically significant in predicting the 

probability at MS B that a DoD acquisition program will fall into either category.  We use the 

Nunn-McCurdy threshold of 15% over the current baseline as our cutoff point for “significant” 
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growth (Schwartz & O’Connor, 2016).  We replicate this process for increases of 25% and 

consider those a “critical’ overrun. 

 

Background and Database 
 

 To the best of our knowledge, the literature appears to be scant with DoD studies which 

simultaneously analyze program cost and schedule performance.  One exception is a National 

Aeronautics and Space Administration (NASA) study (Burgess & Krause, 2014) that looked at 

the interaction between the phasing estimating relationship (PER), the cost estimating 

relationship (CER), and the schedule estimating relationship (SER).  The CER is the total 

program cost from the System Requirements Review (SRR), a date that occurs prior to MS B, 

through launch; while the SER is the time, in months, from SRR to launch.  Given these cost and 

schedule estimates, the PER relays the annual funding profile for the program.  They used 

historical data from 37 NASA programs for their study and developed multiple regression 

models to analyze these relationships. 

 From their analysis, they developed a set of tools to give decision makers the ability to 

quantify trade-offs between cost, schedule, and phasing in their program.  Additionally, Burgess 

and Krause’s (2014) analysis allowed the program manager to conduct a programmatic “health 

assessment” in which the estimating relationships are analyzed to determine if they fall within a 

standard deviation of the mean observed historical value.  Our research deviates from theirs in 

that we analyze categorical indicators for programs that fall under or over the 15% and 25% 

current and original baseline thresholds.  We aim to describe what indicators may correlate to a 

program being deemed “good” or “bad” in the future based upon characteristics at MS B. 

 Before considering candidate variables that may be indicative of a DoD acquisition 
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program being “good” or “bad”, we assume MS I, II, and III to be equivalent to MS A, B, and C, 

respectively.  This is based on their respective definitions and that the naming convention has 

simply changed over time without a tangible change in definition or substance as noted by 

Harmon (2012) and Jimenez, White, Brown, Ritschel, Lucas, and Seibel (2016). 

 From Burgess and Krause (2014), we find two predictive results: 1) longer duration from 

SRR to Preliminary Design Review (PDR) suggests increased likelihood of program schedule 

lengthening, and 2) higher percent of new designs appear to increase likelihood of increased cost 

in acquisition programs.  Jimenez et al. (2016) determined the following variables are 

statistically significant for predicting increased schedule duration: whether a program is a new 

effort or modification to an existing program, the amount of raw funding (adjusted for inflation) 

prior to MS B for a program, and the percentage of total RDT&E (Research Development Test 

and Evaluation) funding profile allocated at MS B.  They also suggest that information obtained 

prior to MS B data, such as length between MS A and MS B, may also prove useful in predicting 

a program’s length. 

 A study conducted by Deitz, Eveleigh, Holzer, and Sarkani (2013) examined the 

importance of developing a robust Analysis of Alternatives (AOA) prior to MS B and the effects 

it may have on program success.  The most important finding of their research is while only 10% 

of a program’s lifecycle cost are invested prior to MS B, 70% of a program’s lifecycle costs are 

committed to by MS B (Deitz et al., 2013).  Similar to Jimenez et al. (2016), this suggests pre-

MS B data is very important to predicting program outcomes.  Unfortunately not many programs 

have pre-MS B data since a DoD acquisition program does not officially begin until MS B.  This 

data limitation will be discussed later. 

 Based on our literature review, we gain insight into what variables may prove useful to 
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predict a program’s cost and schedule as well as the likelihood cost growth and/or schedule 

slippage.  Additionally, we use the research to develop inclusion and exclusion criteria for our 

database.  Programs in our study must meet the following three criteria: 1) be unclassified, 2) 

have Selected Acquisition Report (SAR) data in the Defense Acquisition Management 

Information Retrieval (DAMIR) system, and 3) are designated as a Major Defense Acquisition 

Program (MDAP) or pre-MDAP within DAMIR. 

 Conversely, there are four exclusion criteria for this research.  The first requirement is  

the program SAR must contain a MS A date or funding in the funding profile at least one year 

prior to MS B (indicates the year in which MS A may have occurred).  This requirement is due to 

the pre-MS B data being found predictive in the past research we studied.  Unfortunately, this 

requirement also results in a great deal of programs being ineligible for inclusion because a lack 

of reporting requirements prior to MS B since the program is not official until meeting MS B. 

 The second exclusion criteria is that the program SAR must contain a MS B date and 

corresponding funding information.  This again pertains to the necessity of containing pre-MS B 

data as a means to build a predictive model.  Without the MS B date and funding information, we 

are unable to ascertain the duration of MS A or the funding spent up to MS B.  Additionally, we 

are unable to calculate the projected funding needed to reach IOC or the projected duration of 

MS B to IOC. 

 The third exclusion criteria is the program SAR must contain an IOC date that occurred 

prior to the last reported SAR; this indicates that the program is complete up to IOC.  This is 

important to our research as it gives us a termination point to estimate and ensures we are not 

using projected values as actuals in our model.  IOC is also important as it signifies the point in 

time when the user community initially benefits from the investment in the program. 
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 The fourth exclusion requirement is that the program must contain a SAR within one year 

of reaching MS B.  This requirement allows us to ascertain what the program’s cost and schedule 

estimate was at MS B and if the actual cost and schedule from MS B to IOC is within 15% or 

25% of this estimate.  Note, we allow one year from the time MS B occurs because the program 

may not have been required to report a SAR at the time MS B occurred.  Table 1 summarizes the 

inclusion and exclusion criteria.  Based on these criteria, we use 49 programs in our analysis—

the specific programs are listed in the Appendix. 

Table 1: Program Inclusion Table 

Inclusion/Exclusion 
Criteria 

Program Included Programs Removed Program Count 

Jimenez et al. (2016) 
Database 

56  56 

DAMIR Query 
(MDAP/Pre-MDAP) 

187  243 

Doubled counted from 
Jimenez et al. (2016) 
Database 

 29 214 

IOC Occurs after Last 
SAR 

 61 153 

Missing Milestones A 
or B 

 74 79 

No SAR within 1 year 
of MS B 

 24 55 

Missing IOC  4 51 
Classified  2 49 
Final Number   49 

 

 

 For each of the 49 DoD acquisition programs in our database, we use two SARs.  For the 

response variables, we use the last reported SAR for each program to gather the actual cost and 

schedule duration for each program from MS B to IOC.  For the candidate explanatory variables, 

we use the SAR from the year in which MS B occurred or, if this is unavailable, the SAR within 
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one year of MS B.  The cost and schedule estimate from MS B to IOC in this SAR becomes the 

current estimate with respect to measuring cost growth and schedule slippage.  The cost growth 

percentage is calculated as Current Cost Estimate at MS B − True Cost from MS B to IOC / 

Current Cost Estimate at MS B.  A similar calculation is computed for schedule. 

 

Methodology 
 

 As noted earlier, the purpose of this article is to identify predictor variables that may 

determine the likelihood that a DoD acquisition program will experience cost growth and/or 

schedule slippage above certain thresholds.  To account for the fact that programs change, 

possibly due to forces outside of the program manager’s control, we employ two separate 

threshold values.  The first is the 15% threshold above the current estimate (both cost and 

schedule) from MS B to IOC established at MS B.  The second threshold is set at 25%.  We 

chose these overrun thresholds based upon the significant (15%) and critical (25%) definition of 

Nunn-McCurdy breaches.  For 30 years, the Nunn-McCurdy Act (10 U.S.C. §2433) has served 

as one of the principal mechanisms for notifying Congress of cost overruns in MDAPs—a 

MDAP is defined as a program estimated to have research and development costs greater than 

$480M or procurement costs greater than $2.79B (in FY2014 constant dollars) (Schwartz & 

O’Connor, 2016). 

 As previously mentioned, we investigate both the total acquisition cost and duration from 

MS B to IOC.  All costs in our models are in Base Year 2017 (BY17) dollars using the 2016 

OSD inflation indices, which prevents inflation from influencing our model.  For the 15% and 

25% response categories, we assign each of our 49 programs in the database to one of four 

mutually exclusive categories: “Good/Good”, “Good/Bad”, “Bad/Good”, and “Bad/Bad”.  A 
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program is considered “good” if the final cost growth (or schedule slippage) from MS B to IOC 

is less than the chosen overrun threshold; a program is considered “bad” if it equals or exceeds 

the overrun threshold. 

 Initially, we aimed to identify variables that may predict which of the four categories a 

DoD program might fall into at MS B; however, the limited sample sizes for “Good/Bad” and 

“Bad/Good” prevented this.  Combining these groups only resulted in nine programs with a 

significant overrun and six programs with a critical overrun.  Since this combined category 

lacked the requisite statistical power to conduct a logistic regression analysis, we only focus on 

the “Good/Good” and “Bad/Bad” categories for both the 15% and 25% thresholds.  These 

designations are listed in the Appendix for each program in our database. 

 To build our initial logistic regression model, we use a mixed stepwise approach to 

identify the most predictive variables; a 0.1 level of significance was selected for the entry and 

exit criteria due to the exploratory nature of our work.  For the finalized model, the resultant 

predictor variables from the stepwise procedure must meet the overall model Type I error of 0.1 

and require each variable to be significant according to the Holm-Bonferroni criteria (Holm, 

1979).  We use JMP® Pro 12 for all statistical analysis performed in this article. 

 A logistic regression model predicts the probability of a program identifying with a 

particular group by way of the following equation: 

 

1)(

)(

+
= xf

xf

e
ey             (1) 

 

where y is a binary variable indicating a program’s group, e is the natural exponent function, and 

)(xf  is considered the logit or log-odds function (Gaudard, Ramsey, & Stephens, 2006) and can 
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be written in the form: 

 

pp XXxf βββ +++= 110)(      (2) 

 

Equation (1) represents an s-shaped curve (White, Sipple, & Greiner, 2004) whose values range 

from 0 to 1 (probability). 

 The X variables in (2) typify the standard explanatory variables used in linear regression, 

however, the β coefficients do not represent the mean change in the response.  Instead, ieβ  

represents the odds ratio (OR) of a particular program in our database belonging to either 

“Good/Good” or “Bad/Bad” when the X variables are dichotomous (i.e., 1=iX  when a 

characteristic is present or 0=iX  when a characteristic is not present).  Continuous explanatory 

variables do not possess this easy interpretation of ORs because there is no natural baseline 

group to compare.  Therefore, all explanatory variables have been converted to this dichotomous 

setting. 

 For categorical variables, this transformation is straight-forward.  For example, a dummy 

variable might be coded a ‘1’ if the program is an Air Force acquisition program, ‘0’ otherwise 

(i.e., is an Army, Marine, or Navy program).  For continuous data, we discretize (i.e., create 

categorical groupings) by utilizing histograms to determine potential break points in the data.  

These break points often coincide with the quartiles (25th percentage, 50th percentage, or 75th 

percentage) of the histograms. 

 We use two metrics to quantify the predictive capability of our logistic regression 

models.  The first metric is the Area Under the Receiver Operating Characteristic Curve (AUC).  

The AUC indicates the sorting efficiency of a model with a value of 0.5 indicating merely 
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random chance and a value of 1.0 indicating perfect prediction capabilities (Gaudard, Ramsey, & 

Stephens, 2006).  The AUC is a single measure of the overall discrimination ability of a test.  In 

general, “an AUC that is greater than 0.8 suggests that the diagnostics test has good 

discriminatory power” (McPherson & Pincus, 2016: 80).  Since we have such a small subset of 

data for each group, it is infeasible to set aside a 20% validation pool.  Given this limitation, we 

use a technique called bootstrapping (Efron & Tibshirani, 1994) to present a 90% confidence 

interval for the AUC value for each logistic regression model; these intervals provide the user 

predictive limitations of the model. 

 The second metric to demonstrate the utility of our logistic regression models is the OR 

for each explanatory variable and its corresponding confidence bound (either the lower or upper 

value in the confidence interval that is closet to the value of 1).  An OR equal to 1 indicates the 

explanatory variable does not effect the odds of a program belonging to either the “Good/Good” 

or “Bad/Bad” category.  An OR > 1 implies a higher odds of a program belonging to the 

“Good/Good” category, while an OR < 1 suggests a lower odds of belonging to the 

“Good/Good” category (Szumilas, 2010).  With respect to the confidence interval of an odds 

ratio, either the lower or upper confidence bound is used to estimate the precision of the OR.  In 

practice, this bound is often used as a proxy for the presence of statistical significance if it does 

not overlap the null value (e.g., OR = 1) (Szumilas, 2010). 

 Lastly, to prevent model extrapolation, the ranges of the continuous independent 

variables over which the models are useful must be consistent with the bounds of the programs 

used in our analysis.  Using the models outside these ranges may invalidate the results.  Only 

three continuous explanatory variables proved statistically significant in our models.  For 

projected duration from MS B to IOC the range is 30 to 109 months.  For projected percent 
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complete at MS B, the range is 15% to 70%.  For the duration from MS A to MS B, the range is 

13 to 125 months. 

 

Results 
 

 The following subsections illustrate the logistical models derived from the stepwise 

procedure along with an explanation of each significant explanatory variable.  The first 

subsection highlights the results regarding the “Good/Good” and “Bad/Bad” groups for the 15% 

overrun threshold (Significant), while the second subsection highlights the results for the 

“Good/Good” and “Bad/Bad” groupings for the 25% overrun threshold (Critical). 

 

Significant Overrun 

 

 For this analysis, 15 programs (approximately 31% of our database) fall in the 

“Good/Good” group and 25 (approximately 51% of our database) programs are in the “Bad/Bad” 

group.  Table 2 summarizes the logistic model and associated predictive explanatory variables 

for determining the likelihood of a DoD acquisition program experiencing less than 15% cost 

and schedule growth from MS B to IOC.  The model has an AUC of 0.88 suggesting good model 

discrimination.  All of the estimated ORs and their associated confidence bounds are well above 

or below 1. 
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Table 2: Significant predictor variables for determining the likelihood a program will experience 
cost growth and schedule slippage less than 15 percent.  Numbers rounded to two significant 
digits.  AUC = 0.88 with a 90% bootstrapped confidence interval (1000 samples) of (0.84, 0.98).   
The family-wise error rate for the independent variables is 0.10. 

Variable Estimate Odds Ratio Odds Ratio 
Bound 

Chi-Square P-Value 

Intercept −3.32 N/A N/A 3.20 0.0735 
Projected MS B 
to IOC <= 58 
months 

  3.63 37.83 5.55 7.37 0.0066 

Extra Large 
Program 

  3.37 29.13 4.58 7.01 0.0081 

Electronic 
System 
Program 

  3.27 26.37 3.64 6.09 0.0136 

Projected % 
Complete at 
MS B <= 35% 

  3.32 27.76 3.98 5.99 0.0144 

MDAP −3.34 0.036 0.49 3.75 0.0529 

 

 The Electronic System Program variable indicates if the DoD acquisition program is an 

electronic user interface system, avionics control system, radio network system, or similar 

electronic system.  The OR suggests that such systems typically display cost growth and 

schedule slippage less than 15%.  This appears to be in keeping with Bolten, Leonard, Arena, 

Younossi, and Sollinger (2008) who also concluded that electronic systems are historically 

cheaper. 

 For the Projected MS B to IOC Duration <= 58 Months explanatory variable, this finding 

suggests that acquisition programs whose projected MS B to IOC duration is equal to or less than 

58 months (or approximately 5 years) typically display cost growth and schedule slippage less 

than 15%.  We theorize this may be indicative of relatively shorter-scoped programs whose 

technology may be relatively more mature. 

 The Extra Large Program explanatory variable suggests that acquisition programs with a 
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high cost (greater than $17.5B BY17 dollars in total project acquisition cost) typically experience 

cost growth and schedule slippage less than 15%.  This is logically expected given larger 

programs do not have the flexibility of having sizeable overruns given the sheer amount of 

dollars involved before DoD oversight and/or Congressional reviews intervene and possibly 

cancel the program.  Thus, we treat Extra Large Program as more of a covariate than a traditional 

explanatory variable. 

 The programs identified as MDAP in our database tend to suggest that this explanatory 

variable will lead to cost growth and schedule slippage greater than or equal to 15%.  We believe 

this to be an artifact of our database due to the large number of programs that identify as MDAP 

(45 of 49, or 92%) and the fact that all the programs in the “Bad/Bad” group are identified by 

this variable.  It is also noteworthy that three of the four programs not identified as MDAP are in 

the “Good/Good” group. 

 Finally, the Projected % Complete at MS B <= 35% variable (calculated as the actual 

time from MS A to MS B divided by the sum of the actual time from MS A to MS B and 

projected time from MS B to IOC) is statistically significant; this result suggests that programs 

that spend less time in the MS A-to-MS B phase relative to in comparison from MS A-to-IOC 

phase experience less cost growth and schedule slippage.  This may be due to a high technology 

readiness level (TRL) early in the program’s life or a lesser extent of new technology involved in 

the program.  Such a conclusion is consistent with Dietz et al. (2013) who studied the pre-MS B 

process to identify cost estimating relationships associated with identified TRLs.  Their findings 

indicate that programs with a higher TRL entering MS B experience smaller levels of cost 

growth. 

 Regarding the “Bad/Bad” group, Table 3 displays the logistic model and associated 
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predictor variables for determining the likelihood of a DoD acquisition program’s actual MS B-

to-IOC cost and schedule exceeding its MS B estimate by 15% or more.  The model has an AUC 

of 0.85 suggesting good model discrimination.  All of the estimated ORs and their confidence 

bounds are well above or below 1. 

Table 3: Significant predictor variables for determining the likelihood a program will experience 
cost growth and schedule slippage equal to or exceeding 15 percent.  Numbers rounded to two 
significant digits.  AUC = 0.85 with a 90% bootstrapped confidence interval (1000 samples) of 
(0.79, 0.95).  The family-wise error rate for the independent variables is 0.10. 

Variable Estimate Odds Ratio Odds Ratio 
Bound 

Chi-Square P-Value 

Intercept   1.41 N/A N/A 2.65 0.1038 
Extra Large 
Program 

−4.60   0.01 0.09 8.89 0.0029 

Electronic 
System 
Program 

−3.15   0.04 0.26 6.74 0.0094 

Aircraft   3.29 26.86 3.19 5.00 0.0254 
RDT&E at MS 
B Start >= 
$272M 

  1.87   6.48 1.64 4.47 0.0346 

Qty Expected at 
MS B <= 305 

−1.95   0.14 0.62 3.98 0.0461 

 

 Similar to the “Good/Good” model, both the explanatory variables of Extra Large 

Program and Electronic System Program are statistically significant.  However, both variables 

have negative parameter estimates (and thus ORs much smaller than 1), which indicates 

programs displaying these characteristics are much less likely to experience cost growth and 

schedule slippage equaling or exceeding 15%.  This is consistent with our findings from the 

“Good/Good” group in Table 2. 

 The explanatory variable identifying a program as a fixed wing aircraft is statistically 

significant in predicting whether a program is more likely to experience cost growth and 

schedule slippage equaling or exceeding 15%.  We believe this is due to the large and complex 
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nature of these programs, especially given the modern aircraft programs, such as the F-22 and F-

35, in our study. 

 Programs in our database that expect to procure less than or equal to 305 units at MS B 

tend to indicate that they are less likely to experience cost and schedule growth equaling or 

exceeding 15%.  We believe that this may be due to uncertainty in estimating the variable costs 

for a program and the assembly line schedule.  For example: if a program discovers that a 

variable cost is higher than estimated, the cost is multiplied by the number of units and the more 

units to be built, the higher the cost growth.  The same can be said for underestimating the time a 

unit will take to assemble. 

 The last predictor variable associated with programs experiencing cost growth and 

schedule slippage equaling or exceeding 15% is for programs that spend greater than $272M in 

RDT&E by the start of MS B.  We believe this may be indicative of programs with a low level of 

technological maturity thus requiring larger and more complex development prior to MS B.  It 

could also indicate that a program is integrating many highly sophisticated components and the 

final design is complex in nature.  As mentioned for the “Good/”Good” model, this is consistent 

with Dietz et al. (2013), who researched the pre-MS B process and found that a lack of maturity 

at MS B correlates with higher costs. 

 

Critical Overrun 

 

 For this analysis, 20 programs (approximately 41% of our database) fall in the 

“Good/Good” group and 23 (approximately 47% of our database) programs are in the “Bad/Bad” 

group.  Table 4 shows the logistic model and associated predictor variables for determining the 
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likelihood that a DoD acquisition program’s true MS B-to-IOC cost and schedule will be less 

than 25% larger than its MS B estimate.  The model has an AUC of 0.84 suggesting good model 

discrimination.  All of the estimated ORs and associated 90% confidence bounds are well above 

or below 1. 

Table 4: Significant predictor variables for determining the likelihood a program will experience 
cost growth and schedule slippage less than 25 percent.  Numbers rounded to two significant 
digits.  AUC = 0.84 with a 90% bootstrapped confidence interval (1000 samples) of (0.78, 0.93).  
The family-wise error rate for the independent variables is 0.10. 

Variable Estimate Odds Ratio Odds Ratio 
Bound 

Chi-Square P-Value 

Intercept   5.41 N/A N/A 7.19 0.0073 
Extra Large 
Program 

  3.34 28.25 5.01 7.58 0.0059 

MDAP −4.54 0.011 0.13 7.19 0.0073 
MS A to MS B 
>= 28 Months 

−2.99 0.05 0.27 6.33 0.0119 

1985 or Later 
for MS B Start 

−1.69 0.19 0.69 4.08 0.0434 

 

 With respect to previous results regarding MDAP and Extra Large Programs, we see 

similar results in this section.  Extra Large Programs appear more likely to have cost growth and 

schedule slippage less than 25%, while MDAPs are less likely to have cost growth and schedule 

slippage under 25%. 

For the MS A to MS B greater than or equal to 28 months explanatory variable, these 

programs appear less likely to experience cost growth and schedule slippage less than 25%.  A 

possible explanation is that programs with relatively longer duration from MS A to MS B may 

indicate a program is relying upon complex technology that must be matured, which we believe 

is consistent with prior research conducted by Dietz et al. (2013). 

The variable 1985 or Later for MS B Start indicates if a program is considered to be a 

part of the “modern” era of defense acquisition.  These programs indicate that modern programs 
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appear less likely to experience cost growth and schedule slippage less than 25%.  This could be 

due to the increasing complexity of modern programs, which include the JSF and other highly 

complex systems, and that increased complexity drives cost and schedule.  This is consistent 

with the work conducted by Jimenez et al. (2016), who found that these modern programs tend to 

have a longer schedule. 

 Regarding the “Bad/Bad” group, Table 5 displays the logistic model and associated 

explanatory variables for determining the likelihood of a DoD acquisition program having its 

true cost and schedule from MS B to IOC exceeding its MS B estimate by 25% or more.  The 

model has an AUC of 0.79 suggesting fair to good model discrimination.  All of the estimated 

ORs and associated confidence bounds are well above or below 1. 

 
Table 5: Significant predictor variables for determining the likelihood a program will experience 
cost growth and schedule slippage equal to or exceeding 25 percent.  Numbers rounded to two 
significant digits.  AUC = 0.79 with a 90% bootstrapped confidence interval (1000 samples) of 
(0.70, 0.89).  The family-wise error rate for the independent variables is 0.10. 

Variable Estimate Odds Ratio Odds Ratio 
Bound 

Chi-Square P-Value 

Intercept   0.54 N/A N/A 1.47 0.2253 
Electronic 
System 
Program 

−2.74 0.06 0.33 5.72 0.0168 

Extra Large 
Program 

−2.51 0.08 0.40 4.98 0.0257 

Aircraft   2.10 8.19 1.52 3.20 0.0737 
 

 With respect to the explanatory variables of Extra Large Programs, Fixed Wing Aircraft, 

and Electronic System Programs, we see the same trends as we did in Tables 2−4; Extra Large 

Programs and Electronic System Programs are less likely to experience cost and schedule growth 

greater than 25%, while Fixed Wing Aircraft are more likely to experience cost growth and 

schedule slippage greater than or equal 25%.  There are no additional significant variables for 
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this model. 

 

Discussion and Conclusion 
 

 In this article, we first investigate possible variables that statistically predict the 

likelihood of a DoD acquisition program experiencing cost growth and schedule slippage less 

than 15%.  We also model the likelihood that a program would experience cost and schedule 

growth in excess of (or equal to) 15%.  These percentage increases are measured with respect to 

the MS B-to-IOC estimates at MS B and the actual cost and schedule realized for MS B-to-IOC.  

We then replicate this process to determine which variables may be predictive if the threshold 

percentage increased from 15% to 25%.  We chose these percentages based upon the significant 

and critical thresholds as defined by the Nunn-McCurdy act. 

 Overall, we determined the following five variables appear to be predictive factors for 

determining if a DoD acquisition program will experience less cost and schedule growth: 

Electronic System Programs, programs having a Projected MS B to IOC Duration less than (or 

equal to) 58 Months, Extra Large Programs, programs that expect to procure fewer than 305 

units at the time of MS B, and programs with a Projected % Complete at MS B less than (or 

equal to) 35%.  In contrast, MDAPs, Fixed Wing Aircraft, programs where the duration between 

MS A to MS B greater than (or equal to) 28 months, programs whose Projected % complete at 

MS B is greater than 38% appear, modern programs that enter MS B in 1985 or later, and 

programs that spend greater than, or equal to, $272M (FY17) of RDT&E funding by the 

beginning of MS B to be predictive that programs are likely to experience more cost growth and 

schedule slippage. 

 Our findings with respect to variables that incorporate the time between MS A and MS B 
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are consistent with those of Dietz et al. (2013).  These results suggest that programs with more 

technology uncertainty or immaturity at MS B have an increased likelihood of incurring higher 

cost growth and schedule slippage compared to more technologically mature programs.  

Additionally our findings with respect to Electronic Systems programs are supported by Bolten 

et al. (2008), though we do acknowledge that most of those programs in our database were both 

small in nature (under $3B BY17) and consisted primarily of modifications. 

 As with any statistical model, there are limitations to our logistic regression models.  

First, the database was created from SARs which may contain incomplete information.  The 

models built are only as good as the data used to create them.  There were multiple constraints on 

the data collecting process that hampered the ability to create a more robust database; foremost, 

the lack of availability of pre-MS B data limited the programs that could be included.  

Additionally, the search parameters in DAMIR may have unintentionally excluded programs 

which could have influenced the outcome of our analysis. 

 In order to gain insight on a program’s potential for cost and schedule growth at such an 

early stage as MS B, we attempt to leverage the knowledge of the past to see where others have 

been.  Our models may give program managers a glean at where they may be heading and 

highlight potentials pitfalls.  This set of logistic regression models are designed to provide a tool 

for the DoD acquisition community to make strategic program health assessments.  Practically, 

these models offer the potential to help portfolio managers decide where to allocate risk dollars. 

 Our research differs from prior research in that our database is expanded beyond the 

NASA only programs that were researched by Burgess and Krause (2014).  Additionally, we 

utilize program characteristics across a large range of programs in order to develop logistic 

models that predict the probability of overrunning thresholds identified as being above 
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acceptable levels of cost and schedule growth.  No other research, to our knowledge, relates cost 

or schedule growth probability to overruning such important thresholds.  The models may 

provide managers the ability to predict the possibility and severity of an overrun.  

 



84 
 

References 
 

Bolten, J.G., Leonard, R.S., Arena, M.V., Younossi, O. & Sollinger, J.M. (2008).  Sources 

 of weapon system cost growth: Analysis of 35 major defense acquisition programs 

 (MG 670).  Santa Monica, CA: RAND Corporation. 

 

Burgess, E., & Krause, C. (2014, August).  Integrated estimating relationships.  Paper 

 presented at the NASA 2014 Cost Symposium, Hampton, VA.  Retrieved from 

https://www.nasa.gov/sites/default/files/files/09_Burgess_NASA_Cost_Symposium_2014_IERs

_Final_Tagged.pdf 

 

Deitz, D., Eveleigh, T. J., Holzer, T. H., & Sarkani, S. (2013). Improving program success 

 through systems engineering tools in the pre-milestone B acquisition phase. Defense 

 Acquisition Research Journal, 20(3), 283–308. 

 

Efron, B., & Tibshirani, R. J. (1994).  An introduction to the bootstrap.  Boca Raton, FL: 

 Chapman and Hall/CRC Press. 

 

Gaudard, M., Ramsey, P., & Stephens, M. (2006).  Interactive data mining and design of 

experiments: The JMP® partition and custom design platforms. Cary, North Carolina: 

North Haven Group, LLC. 

http://islab.soe.uoguelph.ca/sareibi/PROJECTS_dr/GRAD_FUTURE_dr/docs/Interactive_DataM

ining.pdf 

 



85 
 

Harmon, B. R. (2012, September). The limits of competition in defense acquisition. Paper 

 presented at the Defense Acquisition University Research Symposium, Fort Belvoir, 

 VA. http://www.dau.mil/Research/symposiumdocs/Harmon-Near substitutes paper.pdf 

 

Holm, S. (1979).  A simple sequentially rejective multiple test procedure.  Scandinavian 

 Journal of Statistics, 6(2), 65–70. 

 https://www.ime.usp.br/~abe/lista/pdf4R8xPVzCnX.pdf 

 

Jimenez, C. A., White, E. D., Brown, G. E., Ritschel, J. D., Lucas, B. M., & Seibel, M. J.  (2016). 

 Using pre-milestone B data to predict schedule duration for defense acquisition programs.  

 Journal of Cost Analysis and Parametrics, 9(2), 112–126. 

 http://doi.org/10.1080/1941658X.2016.1201024 

 

McPherson, R. A., & Pincus, M. R. (2016).  Henry’s clinical diagnosis and management by 

 laboratory methods (23rd ed.). Amsterdam, Netherlands: Elsevier. 

 

Schwartz, M., & O’Connor, C. V. (2016).  The Nunn-McCurdy act: Background, analysis, 

 and issues for Congress (Report No. R41293).  Washington, DC.: Congressional 

 Research Service. 

 Retrieved from https://fas.org/sgp/crs/natsec/R41293.pdf 

 

Szumilas, M. (2010).  Explaining odds ratios.  Journal of the Canadian Academy of Child 

 and Adolescent Psychiatry, 19(3), 227–229. 



86 
 

 

White, E. D., Sipple, V. P., & Greiner, M. A. (2004).  Using logistic and multiple  regression to 

 estimate engineering cost risk, Journal of Cost Analysis and Management, 6(1), 67–79. 

 http://www.tandfonline.com/doi/abs/10.1080/15411656.2004.10462248 

 

 



87 
 

Appendix: List of Programs and Their Respective Designations 
Program 15% 

Group 
25% 
Group 

Program 15% 
Group 

25% 
Group 

A-10 3 3 COBRA Judy Replacement 3 2 
C-17 3 3 Harpoon Missile 3 3 
F-22 3 3 NMT 2 2 
AH-64 3 3 SH-60B 3 3 
B-1B Computer 
Upgrade 

1 1 UGM-96A Trident I Missile 2 1 

C-5 RERP 3 3 SSN 774 (Virginia Class 
Sub) 

2 1 

F-15 1 1 UGM-109 Tomahawk 1 1 
B-1B JDAM 1 1 SSBN 726 SUB 3 3 
FA-18 A/B 2 1 AGM-114A Hellfire Missile 3 3 
AV-8B Harrier 1 1 OH-58D Helicopter 1 1 
P-8 Poseidon 1 1 AAWS-M Javelin 3 2 
V-22 Osprey 3 3 B-2 EHF Inc 1 1 1 
F-35 JSF 3 3 AH-64E Remanufacture 2 2 
CH-47D Chinook 2 1 CH-47F 3 3 
E-8A JSTARS 3 3 UH-60M Blackhawk 3 3 
ALCM Missile 3 3 AESA 1 1 
AMRAAM Missile 1 1 AGM-88E AARGM 3 3 
JASSM Missile 3 3 CEC 3 3 
JDAM 1 1 E-2D AHE 3 3 
JPATS T-6A 3 3 LCS 1 1 
GBU-39 SDB-I 1 1 MH-60S 3 3 
National Aerospace 
System 

2 2 AEHF 3 3 

AGM-88 HARM 2 2 EELV 1 1 
AIM-9X Block 1 2 1 WGS 3 3 
AN/BSY-1  1 1    

 

Code 1 implies cost growth and schedule slippage less than 15% (or 25%) 
Code 2 implies either cost growth or schedule slippage less than 15% (or 25%) but not both 
Code 3 implies cost growth and schedule slippage equal to or greater than 15% (25%) 
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VI. Conclusions and Recommendations 

Chapter Overview 
 

This chapter summarizes the findings in our research, from the cost regression model to 

the four logistic regression models.  We begin by summarizing these findings before we discuss 

how our research questions have been answered.  We then discuss the limitations of our 

research and conclude by discussing further research associated with ours. 

Findings 
 

Given that our research is broken into two parts, we discuss each of them in turn.  We 

begin with the cost model analysis.  This portion of our research focuses on predicting the 

median cost of a DoD program, similar to the 73 analyzed in our database, to give the program 

manager a means to impartially estimate the will-cost of a program, giving them a starting point 

to cross check the program estimate and a building block to perform the should-cost estimate.  

There are several findings that we consider important from this research. 

 The first finding we want to highlight is that MS C information, either MS C Slipping or 

projected duration from MS C to IOC, was not significant for predicting cost.  This is contrary 

to the findings from the findings by Foreman (2007).  This finding allowed us to include three 

satellite programs to our database, which would have been ineligible for inclusion otherwise 

due to their lack of MS C data. 

 Adding to this finding, the U.S. Government Accountability Office conducted a study on 

space programs and presented their findings before the U.S Senate on 11 May 2011.  In their 

findings, they identify that space acquisition programs have historically experienced 

disproportionally large cost and schedule growth (GAO, 2011).  This initially lead us to believe 
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that these programs are not statistically similar to other DoD programs as the research 

conducted by Jimenez et al (2016).  By including three space programs in our analysis and not 

finding that they were statistically different, we can call that conclusion into question.  It must 

be noted, however, that we included only three space programs in a total database of 73 

programs.  Therefore, we may not have had the statistical power to detect any difference. 

 Of the five variables found significant in the cost model, one of the highest contributors 

to our model is the amount of RDT&E funding spent at the start of MS B.  Interestingly, this is 

consistent with the findings by Jimenez et al. (2016) who found this variable to be predictive of 

a longer schedule.  This leads us to believe that front loading a program most likely indicates a 

very technologically complex program which will logically have higher costs and schedule. 

 Shifting focus to the four logistic regression models, we are forced to remove additional 

programs from our study due to data restrictions driving the program count down to 49.  This, 

foreseeably, lead to restrictions in terms of validating our analysis and giving us the statistical 

power to detect other potential predictor variables.  Unfortunately, this means that we could not 

validate our models as is customary.  This is unavoidable, and can be addressed by future 

research by expanding the database to include more programs. 

Next, we highlight the internal consistency that these models demonstrate.  Electronic 

System Programs, which tend to be Small Programs as well, consistently indicate that the 

program will not experience an overrun.  Additionally, the Extra Large Programs indicate in 

every model that these programs are less likely to experience an overrun.  These highlight 

certain program characteristics that suggest for further research to determine an underlying 

cause for why they indicate the potential for an overrun or not, as well as highlights the need for 

adjusting for program size in this research.  We present and discuss conjecture on why these 
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variables may indicate the potential for an overrun in Chapter V, the next step for future 

research is to determine why they indicate this. 

Across the two portions of this research, we note many internal consistencies.  The first 

consistency is that electronic system programs are relevant when predicting cost and predicting 

the probability of an overrun.  As mentioned previously, these programs tend to be cheaper and 

are less likely to experience an overrun.  These may be programs that inexperienced personnel 

should gain experience on without fear of large negative consequences.  Another consistency 

we note is that pre-MS B data is important for programs to monitor and archive.  This research 

and past research, as already mentioned, show that the inception of a program can have a drastic 

effect on how it performs.  As such, more effort should be put towards monitoring and 

controlling this process.   

Research Questions 
 

 The first question we set out to answer was: How can we use and build upon a previously 

created database to develop a mathematical model to predict the median cost of a program?  In 

our research we leveraged the 56 program database built by Jimenez et al. (2016) and added 17 

more programs and additional analytical variables to build a highly predictive model for the 

median cost from MS B to IOC in a DoD program.  By finding these additional programs and 

predictive variables we are able to move the process of cost estimating forward into a data 

driven process. 

 Answering the second question: How can we identify program characteristics for 

significantly or critically overrunning either cost, schedule, or both given the current APB, at 

MS B through IOC, and predict the probability that a program will experience such overruns?  

In conducting this analysis, we are forced to include only 49 programs due to the requirement 
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of having a program estimate within a year of MS B, which left us with a lack of power to 

detect the probability of only overrunning either cost or schedule, but not the other.  We are 

able to give logistic regression models to program managers that identify several program 

characteristics for either significantly, or critically, overrunning both cost and schedule, or 

neither.    

Limitations 
 

 There are several limitations to our findings that effect the applicability of this research to 

the field that we are able to identify.  Foremost, the lack of available program data prior to MS 

B limited the inclusion of many programs.  The ability of pre-MS B data to predict program 

cost dictates the use of this exclusion criteria, as this data has been found to be highly 

predictive, so the limitation cannot be avoided.  By including 73 programs in the cost regression 

model, however, we have a good-sized data pool to draw significant inference.   

Shifting to the logistic regression analysis of this thesis, the requirement to remove 24 

programs due to the lack of an available program estimate within a year of MS B lead to further 

issues with our ability to identify predictive measures for cost and schedule overruns as outlined 

previously in this thesis.  This analysis is affected to such an extent that we are unable to predict 

the programs that lie in the middle of our analysis and overrun either cost or schedule, but not 

both.  By adding more programs to this analysis there may be enough data to identify 

delineating factors that bind the programs in this category.  Additionally, this leaves us with too 

small of a data pool to validate any of our logistic models, leaving the models un-tested when 

presented with new data. 

An additional limitation to our research is the fact that the analysis is only as good as the 

data that goes into it.  The data is gathered through the program SARs, which may contain 
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faulty or incomplete data.  This is an accepted limitation due to the availability of program 

SARs and the lack of additional means to acquire the same program data.  The missing data 

from the SARs lead to the inclusion of only 73 programs in the cost model, and further reduced 

the programs to 49 in the logistic regression models, thus limiting the ability for us to make 

inferences in general. 

Lastly, we must address the accuracy of our models and how they may be affected by the 

lack of data.  The cost model’s accuracy is affected greatly by the data included in generating 

the model.  These may very well not represent an average DoD program at all due to the 

limitations already mentioned in the data.  Additionally, due to the nature of the analysis, this 

model gives the median program estimate.  This is most useful when analyzing a portfolio of 

programs from the directorate level, rather than a single program in an isolated manner.  This 

will allow the decision maker the greatest level of confidence and flexibility when analyzing the 

results and allocating the resources.  Concerning the logistic regression models, we lacked the 

ability to validate the model by setting aside 20% of the data due to the small sample size.  This 

is an issue when discussing the potential accuracy because we simply could not test how 

accurate these models may be.  As mentioned in Chapter V, we use the bootstrapping method to 

give a 90% confidence interval for these models to remedy this issue. 

Recommendations for Future Research 
 

 There are three areas that we believe this research can be expanded upon and ultimately 

improved.  Firstly, as identified in prior research and already mentioned by this research, the 

use of IOC as a termination date for regression analysis inherently introduces a level of known 

variability that is unaccounted for in our models.  By accounting for this known variability, 

future researcher could increase the fidelity on actual major drivers of cost and schedule.  This 
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new metric for IOC would potentially look like a certain percentage of units delivered, which 

could standardize all programs in the dataset.  Standardizing this termination point could not 

only influence how researchers analyze future DoD programs, but also potentially influence 

how IOC is defined in a program. 

 The second area for future research we identify is expanding upon our logistic regression 

models.  We use MS B as a proxy for the current APB and define the two thresholds as 

significant and critical from this estimate, using IOC as the termination point.  It could be more 

useful to include the original APB and apply the significant and critical threshold overruns from 

this point in the program.  This is because programs are simultaneously held accountable by the 

Nunn-McCurdy Act thresholds of their current and original baselines and can breach either one 

of them. 

 The third area for future research we identify is to expand upon the analysis of 

acquisition reform to include more years in which there were major reforms.  This would 

expand upon the 1985 or Later for MS B Start variable identified by Brown et al. (2015) and 

identify if the programs started in the different eras of acquisition reform are significantly 

different from one another.  This could potentially identify whether or not acquisition reform 

has helped the acquisition process in terms of preventing schedule slippage or cost overruns. 

 As always, the limitations of a small sample size can be remedied by future research by 

simply being able to add more programs to the analysis.  This may give more insight into true 

predictive variables for all of the models in this research.  It could also identify variables we 

found predictive that are not predictive to the population as a whole but, rather, an artifact of 

the data we analyzed. 
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Chapter Summary 
 

 In this chapter, we attempt to wrap up our entire research endeavor by discussing the 

relevant findings, irrelevant findings, our limitations, and how future researchers can build upon 

what we have done.  Through this we are able to draw an end to what we have accomplished 

and simultaneously provide a stepping off point for others to further our efforts.  The findings 

contained within this research have the potential to impact future cost analysts and program 

managers when faced with the dilemma to estimate their portfolio’s cost and allocate resources 

accordingly.  To this end, we have provided the beginnings of what can become a thorough 

breakdown of indicators of cost and schedule growth above and beyond what can be considered 

acceptable.   

 We recommend the use of our logistic models as a tool to manage a portfolio of programs 

in order to gain potential elusive insight into the behavioral characteristics of programs.  

Additionally, we recommend the use of our cost regression model to analytically estimate the 

median cost of a program, or portfolio of programs, to use as a cross-check for the will-cost 

estimate and allocate resources accordingly.  Additionally, by using this cost model the cost 

estimator and program manager can work together to identify potential cost savings to satisfy 

the should-cost mandate from the Secretary of the Air Force. 
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Appendix A: Implementation of Will-Cost and Should Cost Management 
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Appendix B: Predictor Variables Investigated in Thesis 
 

• MS A to MS B Duration (Months) – Continuous Variable 
o This variable indicates the total time it took in months for a program to 

complete MS A to MS B according to the last SAR date.  In this variable we 
are only concerned with actual schedule duration data available to the cost 
estimator at the time of Milestone B/EMD start. 
 

• Quantity Expected at MS B – Continuous Variable 
o This variable indicates the estimate of total quantity of weapons systems 

that were expected to be produced at MS B at the time of the last SAR 
date. 
 

• RDT&E $ (M) at MS B Start (BY17) – Continuous Variable 
o This variable is based on raw total RDT&E dollars (in millions) that were 

allocated to the program before, and up to the start of, MS B.  The dollars 
were all standardized into the base year, when the research began (BY17). 
 

• (Projected) % of RDT&E Funding at MS B Start (BY17) – Continuous Variable 
o This variable is based on the percent of available RDT&E dollars 

allocated to the program before, and up to the start of, MS B.  While this 
variable is based on a percentage, the dollars that this percentage was 
derived from were all standardized into the base year, when the research 
began (BY17). 
 

• (Projected) Total Program Acquisition Cost (BY17) – Continuous Variable 
o This variable is the total projected acquisition costs, from MS B to IOC, 

estimated at MS B or the earliest available program SAR.  It serves to 
identify how large a program is projected to be in terms of cost. 
 

• Modification – Binary Variable 
o This variable is concerned with programs whose existence serves as a 

modification to a pre-existing weapons system.  If a weapons system is a 
modification, it does not necessarily mean it will not have pre-MS B data 
associated with it.  Every program is different and, therefore, it cannot be 
assumed that a modification will automatically start at MS B. 
 

• Prototype – Binary Variable 
o This variable is concerned with programs that create a prototype, or 

prototypes, of a weapons system before production of that weapons 
system begins.  More than one type of prototype for a weapons system 
can be created in a given program. 
 

• Concurrency Planned – Binary Variable 
o This variable addresses planned concurrency in a given program prior to 

MS B.  Concurrency is the proportion of RDT&E dollars that are authorized 
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during the same years that Procurement appropriations are authorized.  The 
planned level of concurrency forces managers to make decisions that can 
lead to [schedule] growth if either too much or too little concurrency is 
accepted for a given program (Birchler, Christle, & Groo, 2011, p. 246). 
 

• 1985 or Later for MS B Start – Binary Variable 
o This variable accounts for a time series trend of programs that started their 

MS B in 1985 or later.  It is shown that programs which began development 
during 1985 or later (considered “contemporary”) expend a greater 
percentage of obligations by their schedule midpoint than the earlier pre-
1985 programs.  We attribute this difference to the President’s Blue Ribbon 
Commission on Defense (commonly called the Packard Commission) and 
the subsequent acquisition reforms. 
 

• Air Force – Binary Variable 
o This variable identifies if the lead service on the program was the 

United States Air Force. 
 

• Navy – Binary Variable 
o This variable identifies if the lead service on the program was the 

United States Navy. 
 

• Army – Binary Variable 
o This variable identifies if the lead service on the program was the 

United States Army. 
 

• Marine Corps – Binary Variable 
o This variable identifies if the lead service on the program was the 

United States Marine Corps. 
 

• Aircraft – Binary Variable 
o This variable identifies if the weapons system program is an aircraft 

program, regardless of service it is associated with.  The criterion to qualify 
as an aircraft for this variable is any weapons system whose primary 
function is flight; both rotary-wing and fixed-wing programs. 
 

• Fighter Program – Binary Variable 
o This variable identifies if the weapons system program is a fighter 

program, or close variation thereof, regardless of service it is associated 
with. 
 

• Bomber Program – Binary Variable 
o This variable identifies if the weapons system program is a bomber 

program, or close variation thereof, regardless of service it is associated 
with. 
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• Helo Program – Binary Variable 
o This variable identifies if the weapons system program is a helicopter 

program, or close variation thereof, regardless of service it is associated 
with. 
 

• Cargo Plane Program – Binary Variable 
o This variable identifies if the weapons system program is a cargo plane 

program, or close variation thereof, regardless of service it is associated 
with. 
 

• Tanker Program – Binary Variable 
o This variable identifies if the weapons system program is a tanker plane 

program, or close variation thereof, regardless of service it is associated 
with. 
 

• Electronic Warfare Program – Binary Variable 
o This variable identifies if the weapons system program is an electronic 

warfare program, or close variation thereof, regardless of service it is 
associated with.  An electronic warfare program, as not to be confused with 
an electronic system program, differs greatly in its main function(s).  A 
description from Lockheed Martin makes the distinction that it involves the 
ability to use the electromagnetic spectrum – signals such as radio, infrared 
or radar – to sense, protect, and communicate.  At the same time, it can be 
used to deny adversaries the ability to either disrupt or use these signals 
(Electronic Warfare). 
 

• Trainer Plane Program – Binary Variable 
o This variable identifies if the weapons system program is a trainer plane 

program, or close variation thereof, regardless of service it is associated 
with. 
 

• Missile Program – Binary Variable 
o This variable identifies if the weapons system program is a missile program, 

or close variation thereof, regardless of service it is associated with. 
 

• Electronic System Program – Binary Variable 
o This variable identifies if the weapons system program is an electronic 

system program, or close variation thereof, regardless of service it is 
associated with.  This differs greatly from the previously described 
electronic warfare variable in that electronic systems programs are 
principally concerned with the electronic user interface of a system, 
avionics controls, or other similar applications that primarily support the 
electronic usability of a system, or system of systems. 
 

• Submarine Program – Binary Variable 
o This variable identifies if the weapons system program is a submarine 
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program, or close variation thereof, regardless of service it is associated 
with. 
 

• Ship Program – Binary Variable 
o This variable identifies if the weapons system program is a surface ship 

program, or close variation thereof, regardless of service it is associated 
with. 
 

• Satellite Program – Binary Variable 
o This variable identifies if the weapons system program is a satellite 

program, or close variation thereof, regardless of service it is associated 
with. 
 

• ACAT I – Binary Variable 
o This variable makes the distinction if the program is an ACAT I program or 

not.  This is significant in that ACAT I programs deal with a much larger 
dollar amount and thus are more susceptible to cost and schedule growth by 
way of their large-scale and complexity efforts. 

 
• (Projected) MS C to IOC Duration (Months) – Continuous Variable 

o This variable indicates the total estimated time, in months, for a program to 
meet IOC from MS C according to the earliest available SAR estimate.  
This variable has been found to be predictive of cost growth in the 
programs studied by Foreman (2007).  With this variable, we are concerned 
with giving the cost estimator the ability to enter in the projected duration, 
in months, of the gap between MS C and IOC to predict program cost. 
 

• (Projected) MS C Slip – Binary Variable 
o This variable indicates whether the program projected date for meeting 

IOC extends past the initial estimate.  Foreman (2007) has found that a slip 
in MS C is indicative of program cost growth in past research. 
 

• No MS A Date – Binary Variable 
o This variable identifies whether a program did not contain a MS A date in 

the schedule portion of the SAR, but did include funding at least one year 
prior to MS B.  This is used to identify these programs and test that they 
are not statistically different from the other programs and is not used in a 
predictive capacity. 
 

• Small Program – Binary Variable 
o This variable identifies whether a program’s projected total acquisition 

costs (RDT&E and Procurement) are below $3000 M.  This value is 
determined from analyzing the histogram of the (projected) total program 
acquisition costs of the programs in our study and coincides closely with 
the 25% value. 
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• Medium Program – Binary Variable 
o This variable identifies whether a program’s projected total acquisition 

costs (RDT&E and Procurement) are above $3000 M but below $7000 M.  
This value is determined from analyzing the histogram of the (projected) 
total program acquisition costs of the programs in our study and coincides 
closely with the 25% to 50% range. 
 

• Large Program – Binary Variable 
o This variable identifies whether a program’s projected total acquisition 

costs (RDT&E and Procurement) are above $7000 M but below $17500 M.  
This value is determined from analyzing the histogram of the (projected) 
total program acquisition costs of the programs in our study and coincides 
closely with the 50% to 75% range. 
 

• Extra Large Program – Binary Variable 
o This variable identifies whether a program’s projected total acquisition 

costs (RDT&E and Procurement) are above $17500 M.  This value is 
determined from analyzing the histogram of the (projected) total program 
acquisition costs of the programs in our study and coincides with the 75% 
value. 
 

 
• (Projected) % Complete at MS B Start – Continuous Variable 

o This variable is inspired by the % RDT&E variable and serves to project 
the percent that a program is complete, to IOC, when MS B occurs.  It is 
calculated by dividing the projected duration from MS B to IOC by the 
sum of duration from MS A to IOC and projected duration from MS B to 
IOC.  This serves to indicate where the program managers believe the 
program is in terms of schedule completeness.  It could indicate program 
maturity level. 
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Appendix C: E-mail Correspondence Concerning Use of Jimenez’s Predictive Model 
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potential problems in their program based on the program’s characteristics, potentially saving millions in cost and schedule 
overruns. 
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